
 

 

 
 
 

Protecting PostgreSQL Against SQL 
Injection Attack 

 
 
 
An EnterpriseDB 
White Paper 
 
 
For DBAs, Application 
Developers, and Enterprise 
Architects 
March 2010 

 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 2 

Table of Contents 

Introduction........................................................................................................................................................... 3!
What is a SQL Injection Attack? .................................................................................................................. 3!

An Example of a SQL Injection Attack............................................................................................... 3!
Protecting PostgreSQL Against SQL Injection..................................................................................... 6!

General Safeguards........................................................................................................................... 6!
Using SQL/Protect from EnterpriseDB............................................................................................... 6!

Conclusions .........................................................................................................................................................11!
About EnterpriseDB.........................................................................................................................................11!

 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 3 

Introduction 

A number of recent high profile SQL injection attacks against prominent organizations 
have reminded data management professionals how quickly a serious data breach can 
happen and the consequences that come with being a victim. For example, in November 
2010, the British Royal Navy website was compromised with a SQL injection attack that 
cost the organization its list of usernames and passwords. In December 2010, thieves used 
a SQL injection attack against the CitySights New York tour company to steal over 
100,000 bankcard numbers.  
 
In 2010, the Verizon Business Payment Card Industry Compliance Report stated that SQL 
injection attacks were the number two cause of payment card breaches (the number one 
cause was backdoors). And according to Cisco systems, SQL injection attacks comprise 
37% of all events recorded by Cisco Remote Operations Services. 
 
Because a database professional’s number one job is to protect the data, it’s important 
that everyone takes the threat of SQL injection attacks seriously and do what is possible to 
prevent them. This paper discusses the methods of SQL injection attacks, describes 
general ways to prevent them, and provides a look at EnterpriseDB’s SQL/Protect module 
that provides built-in protection for PostgreSQL servers against SQL injection attacks.  
 

What is a SQL Injection Attack? 

SQL injection refers to the act of a data pirate or vandal inserting a Structured Query 
Language (SQL) statement through some open door (e.g. a field on a PHP application/web 
form), which is run in an unauthorized fashion on a database server. A SQL injection attack 
is basically un-sanitized, unintended SQL-based user input with the goal being either the 
acquisition of information from the database or the destruction of data. 
 
Because most every Web-based/online application has a relational database back end, a 
SQL injection attack is an easy way for thieves and vandals to gain access and compromise 
a database since the online application itself provides their window of opportunity. 
 

An Example of a SQL Injection Attack 
 
A SQL injection attack is typically launched through a web form that asks for user input, 
such as a login name and password, an email address, or other very common information. 
By entering in what amounts to a custom SQL WHERE clause, an unauthorized user can 
potentially see table data or have DML or DDL commands executed.  
 
For example, a very common web form is one that asks a user to enter their email address 
so that user login information can be sent to them.  
 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 4 

 
It’s standard practice for an application to validate that an email address actually exists 
before it goes to the trouble of trying to email user data to someone, and this normally 
equates to performing a SQL query against a table that contains email addresses.  A query 
like the following might be used:  
 
SELECT USERID, PASSWORD 
FROM   USERLOGIN 
WHERE  EMAIL_ADDRESS = ‘inputted email address’; 
 
Someone attempting a SQL injection attack might try entering a single quote character in 
the online form’s email address control and typing in a tautology WHERE predicate:   
 

 
Whereas an empty email address string would return no rows from PostgreSQL:  
dev=# select * from userlogin where emailaddress = ''; 
 userid | password | emailaddress  
--------+----------+-------------- 
(0 rows) 
 
The end result of the tautology predicate above is that a query like the following is sent to 
the database:  
 
SELECT USERNAME, PASSWORD 
FROM   USERLOGIN 
WHERE  EMAIL_ADDRESS = ‘’ or 1=1; 
 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 5 

Such a query would return all the rows back in the database’s table and could potentially 
expose information to the SQL injection attacker: 
 
dev=# select * from userlogin where emailaddress = '' or 1=1; 
 
   userid   | password |     emailaddress      
------------+----------+---------------------- 
 johnsmith  | password | johnsmith@gmail.com 
 janedoe    | password | janedoe@gmail.com 
 timjohnson | password | timjohnson@gmail.com 
(3 rows) 
   
Potentially even worse, if a data vandal learns the name of some of the underlying 
database tables, and security has not been set up properly in the database, they could 
enter a combination of single quotes and semi-colons (which terminate a SQL statement) 
so that a query set like the following is passed through:  
 
SELECT USERNAME, PASSWORD 
FROM   USERLOGIN 
WHERE  EMAIL_ADDRESS = ‘’; DROP TABLE USER_INFO;  
 
The end result, needless to say, is not something the DBA wants to have happen: 
 
dev=# select * from userlogin where emailaddress = '';drop table 
userlogin; 
 
 userid | password | emailaddress  
--------+----------+-------------- 
(0 rows) 
 
DROP TABLE 
 
dev=# select * from userlogin; 
ERROR:  relation "userlogin" does not exist 
LINE 1: select * from userlogin; 
 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 6 

Protecting PostgreSQL Against SQL Injection 

Protecting PostgreSQL from data pirates and vandals who attempt to use SQL injection 
attacks against a database doesn’t have to be a difficult task. There are generic safeguards 
that can be implemented by the developer and DBA, which will close a number of potential 
openings.  
 
However, in addition to generic best practice standards, another way of protecting 
PostgreSQL servers against SQL injection attacks is offered by EnterpriseDB in the form of 
its SQL/Protect module. SQL/Protect is a built-in SQL firewall that is both flexible and 
thorough, and guards against many different types of SQL injection attacks.  
 
General Safeguards 
 
A succinct list of standard defenses that a developer and/or a DBA can implement include 
the following:  
 

• Sanitize the user input before it’s sent to the database using either functions 
supplied by the database or application language, with the goal being to strip out 
any quotation marks, semi-colons, and the like.  

• The use of prepared statements can make many SQL injection attacks fall flat, with 
the reason being there is no SQL parsing and the input is treated as just data 
coming in.  

• Requests sent through web/online forms should be granted the most minimal 
security privileges possible, which helps remove the fear of any unauthorized DML 
or DDL requests being executed.  

 

Using SQL/Protect from EnterpriseDB 
 
One of the best ways to ensure proper protection against SQL injection attacks is to 
implement a SQL firewall inside a database that automatically guards against any malicious 
attempts at accessing or damaging data. This becomes very easy for PostgreSQL servers 
when SQL/Protect from EnterpriseDB is utilized.  
 
SQL/Protect provides a DBA-managed layer of security in addition to normal database 
security policies by screening incoming queries for common SQL injection profiles. In 
addition, SQL/Protect can also be taught to accept learned 'friendly' queries and reject 
unfamiliar data request patterns. Everything is controlled and monitored by the DBA 
through simple database commands.  
 
The following sections walk through the process of getting started with SQL/Protect and 
explain how SQL/Protect establishes itself as a solid SQL firewall against SQL injection 
attacks.  
 
Getting Started with SQL/Protect 
 
Getting started with SQL/Protect is easy. The first step is to download a version of either 
Postgres Plus Standard Server or Postgres Plus Advanced Server from the EnterpriseDB 
website and use the software’s graphical installer, which installs the PostgreSQL server, all 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 7 

its dependencies, and a number of ancillary pieces of software (e.g. the GIS module for 
spatial development).   
 
One piece of software installed is StackBuilder Plus, which provides an easy way to install 
optional community sets of software for PostgreSQL as well as EnterpriseDB supplied 
modules.  
 
To install SQL/Protect, the DBA invokes StackBuilder Plus and selects the SQL/Protect 
option:  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once SQL/Protect is selected and the Next button is clicked, StackBuilder Plus will 
download the SQL/Protect software:  
 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 8 

 
Once the download is complete, StackBuilder Plus will indicate it is finished, and then 
proceed to the installation panel for SQL/Protect:  
 
 
 
 
 
 
 

The installation wizard will ask the DBA to log into their EnterpriseDB account, validate the 
directory the software will be installed into, and finally SQL/Protect will be installed.   
 
Configuring SQL/Protect  
 
Once SQL/Protect has been installed, there are a few parameter changes that need to be 
made to PostgreSQL’s postgresql.conf configuration file. The DBA needs to edit two 
existing parameters to include the following variables:  
 
shared_preload_libraries = '$libdir/sqlprotect' 
custom_variable_classes = 'edb_sql_protect' 
 
Once they parameters above have been modified, two new lines need to be added to the 
postgresql.conf file:  
 
edb_sql_protect.enabled = on 
edb_sql_protect.level = learn 
 
The edb_sql_protect.enabled parameter controls whether SQL/Protect is actively 
monitoring the server for SQL injection attacks. The edb_sql_protect.level parameter 
manages the level of protection for the server, and will be covered in more detail in the 
section.  
 
There are two optional parameters that can be set. The first is 
edb_sql_protect.max_protected_roles, which sets the maximum number of roles that 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 9 

can be protected. If the parameter is omitted, the default setting is 64. The second 
parameter is edb_sql_protect.max_protected_relations, which sets the maximum 
number of relations (tables) that can be protected per role. If this parameter is explicitly 
set, the default setting is 1024. 
 
Once the modifications have been made to the postgresql.conf file, the PostgreSQL 
server needs to either be stopped and restarted for the changes to take effect, or the DBA 
needs to issue a reload configuration command (pg_ctl reload) to have the 
configuration file reloaded.  
 
Determining How to Protect the Server 
 
The next step in using SQL/Protect is determining how to protect the PostgreSQL server 
against SQL injection attacks.  The first decision revolves around which databases need 
protection.  
 
For each database on the server that the DBA wants to protect, they need to run a quick 
SQL script (sqlprotect.sql, which can be found in the share directory of the Postgres 
Plus installation) that creates a number of objects needed to manage the metadata in 
SQL/Protect.  
 
 Once the database(s) to protect are chosen, a DBA then decides which security roles 
and/or user accounts will be monitored for SQL injection attack activity.  Within 
PostgreSQL, roles (sometimes called groups) serve as containers for security privileges on 
underlying objects such as tables.  SQL/Protect can use PostgreSQL’s security roles as its 
object of focus in determining what security accounts to monitor for SQL injection attack 
attempts. Standard user accounts may also be monitored.  
 
It’s very simple for a DBA to monitor a security role with SQL/Protect. For example, 
suppose the DBA defines a user login account called webuser that is assigned to the 
security role of stduser. To have the role and underlying user’s activities monitored with 
SQL/Protect, the DBA simply issues the following commands from within a SQL query 
session:  
 
SET SEARCH_PATH=sqlprotect;  
SELECT protect_role('stduser'); 
 
To find out what roles have been designated as being managed by SQL/Protect and their 
protection options, the DBA can query one of SQL/Protect’s objects like this:  
 
dev=# \x 
Expanded display is on. 
dev=# SELECT * FROM sqlprotect.list_protected_users; 
-[ RECORD 1 ]------+-------- 
dbname             | dev 
username           | stduser 
protect_relations  | t 
allow_utility_cmds | f 
allow_tautology    | f 
allow_empty_dml    | f 
 
The above output shows the following:  



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 10 

• The role stduser within the dev database will be monitored for SQL injection 
attack activity  

• The following activities for the role stduser will be either warned about or 
restricted, depending on the level of protection configured by the DBA:  

o Utility commands: DDL commands 
o Tautology statements: WHERE predicates such as WHERE 1 = 1 
o Empty DML commands: statements such as DELETE FROM USERLOGIN 

 
To actually activate the monitoring of the stduser role, the DBA needs to select one of the 
modes used by SQL/Protect to check for SQL injection attacks. The modes are controlled 
by the edb_sql_protect.level parameter. There are currently three modes available:  
 

1. learn – this mode tracks the activities of protected roles and records the relations 
used by the roles. This is used when initially configuring SQL/Protect so the 
expected behaviors of the protected applications are learned. 

2. passive – this mode issues warnings if protected roles/user accounts are breaking 
the defined rules, but does not actually prevent a suspect SQL statement from 
executing. This also comes in handy when testing SQL/Protect test cases. 

3. active – this mode prevents all monitored statement types (DDL, tautology, empty 
DML) for a protected role/user account from executing. In this mode, SQL/Protect 
has in essence become a SQL firewall for the database.  

 
When SQL/Protect is set to the learn mode, feedback will be issued when a monitored 
role/user account executes a SQL statement for the first time against an object:  
 
dev=> select emailaddress from userlogin where userid = 
'fred'; 
NOTICE:  SQLPROTECT: Learned relation: 50305 
 emailaddress  
-------------- 
(0 rows) 
 
Using SQL/Protect to Prevent SQL Injection Attacks 
 
Once SQL/Protect has learned the typical SQL access patterns for a monitored role/user 
account, the DBA can then set the edb_sql_protect.level parameter to ‘active’ and then 
all monitored roles/user accounts will now be protected from SQL injection attacks: 
 
dev=> select * from userlogin where userid = '' or 1=1; 
ERROR:  SQLPROTECT: Illegal Query: tautology 
dev=> delete from userlogin; 
ERROR:  SQLPROTECT: Illegal Query: empty DML 
dev=>  
 
Monitoring SQL injection attack attempts that have occurred against a server is very easy.  
A DBA simply queries the edb_sql_protect_stats table in the sqlprotect schema to 
find out if any attempts have occurred against their database:  
 
dev=# \x 
Expanded display is on. 
dev=# SELECT * FROM sqlprotect.edb_sql_protect_stats; 
-[ RECORD 1 ]------- 
username   | webuser 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 11 

superusers | 0 
relations  | 0 
commands   | 0 
tautology  | 1 
dml        | 1 
 
 
 
 

Conclusions 

SQL injection attacks represent a very credible threat to databases and should be taken 
seriously by both the DBA who manages the database and the developer who creates the 
front-end application where many SQL injection attacks originate. While there are a 
number of general rules of thumb that should be followed to guard against SQL injection 
attacks, a thorough plan includes implementing a SQL firewall inside the database that 
monitors and guards against malicious attempts at accessing and modifying data. 
SQL/Protect from EnterpriseDB supplies just this type of functionality in an easy to use 
manner.  
 
For more information on Postgres Plus Standard Server including downloads of the 
software, visit: http://www.enterprisedb.com/products-services-training/products/postgres-
plus-standard-server.  More information on Postgres Plus Advanced Server can be found 
at: http://www.enterprisedb.com/products-services-training/products/postgres-plus-
advanced-server. Both downloads provide a trial of SQL/Protect.  
 
Online documentation for SQL/Protect can be found at: 
http://www.enterprisedb.com/docs/en/9.0/sqlprotect/Table%20of%20Contents.htm.  
 
 

About EnterpriseDB 

 
EnterpriseDB is the enterprise PostgreSQL company, providing products and services 
worldwide that are based on and support PostgreSQL, the world's most advanced open 
source database. EnterpriseDB’s Postgres Plus products are ideally suited for transaction-
intensive applications requiring superior performance, massive scalability, and 
compatibility with proprietary database products. Postgres Plus products provide an 
economical open source alternative or complement to proprietary databases without 
sacrificing features or quality.   
 
EnterpriseDB understands that adopting an open source database is not a trivial task. You 
have lots of questions needing answers, schedules and budgets to keep, and processes to 
follow. We have helped thousands of organizations like yours through the steps to 
investigate, evaluate, prove, develop, and deploy their open source solutions. 
 



Protecting PostgreSQL Against SQL Injection Attack 

 

© Copyright 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com  

EnterpriseDB The Enterprise PostgreSQL Company 12 

To make your work easier and faster we have special self-service sections on our website 
dedicated to assisting you in each of the steps. For working with any of these versions, 
EnterpriseDB has many free resources on the web site targeted at the various stages of 
open source adoption. Visit http://www.enterprisedb.com/solutions/stages/overview.do. 
 

! Getting started – access to free downloads, installation guides, demos, starter 
tutorials, and more to help get familiar with the database. 

! Evaluations and pilots – learn how Postgres has helped hundreds of Oracle users 
cut costs and MySQL users improve operations. 

! Development – EnterpriseDB employs more Postgres experts, developers and 
community members and than any other company, and offers key application 
development resources. 

! Deployment – information on how to scale a Postgres application, add Qualities of 
Service (QoS) like high availability or security, or get a health check. 

If you would like to discuss training, consulting, or enterprise support options, please do 
not hesitate to contact EnterpriseDB directly. EnterpriseDB has offices in North America, 
Europe, and Asia. The company was founded in 2004 and is headquartered in Bedford, 
MA. For more information, please visit http://www.enterprisedb.com.  
 
Sales Inquiries: 

sales-us@enterprisedb.com (US) 
sales-intl@enterprisedb.com (Intl) 
+1-732-331-1315 
1-877-377-4352 

General Inquiries: 
info@enterprisedb.com 
info.asiapacific@enterprisedb.com (APAC) 
info.emea@enterprisedb.com (EMEA) 
+1-732-331-1300 

 
 
 



 

© 2011 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB 
Corporation. Other names may be trademarks of their respective owners. http://www.enterprisedb.com 

 


