
Kelly Poole
VP, Product Management

Petr Jelinek
VP, Chief Architect

EDB Postgres Distributed
The Next Generation
of Postgres High Availability

P O W E R T O P O S T G R E S

Marc Linster
VP Solutions Architecture

AUTHORED BY:

EDB | WWW.ENTERPRISEDB.COM

02

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITYEDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Introduction

1. Overview of High Availability in Postgres

2. Replication in Postgres
2.1 History of replication in Postgres
2.2 The Limitations of Postgres Logical
Replication for HA

3. Overcoming Postgres HA limitations
with EDB Postgres Distributed
3.1 What is EDB Postgres Distributed
3.2 What is different about EDB Postgres
Distributed?

4. Always On Architectures
4.1 Key components of the Always On
Architectures
4.2 How it works and how it solves problems
4.2.1 What happens when the Lead Master fails?
4.2.2 How do I switch the traffic from Lead
Master to Shadow Master to execute
maintenance operations?
4.2.3 What happens when one of my HARP
nodes fails?
4.2.4 What happens when a data center fails?
4.3 Using EDB Postgres Distributed with EDB’s
Postgres server distributions

5. Conclusion

Contents

03

04

06
07
08

09

10
10

13
15

16
16
16

16

16
16

18

EDB | WWW.ENTERPRISEDB.COM

03

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Over the last five years, the definition of High Availability (HA) has changed. HA used to refer to
technology protecting users from hardware failures, network glitches, and software faults. Today,
HA technology makes sure that software services are always on—365 days a year, 24 hours a day.
HA products still protect users from failures, but as hardware, networks, power supplies, and storage
devices have become much more reliable, near-zero downtime maintenance and management have
moved to the forefront of the HA debate. Near-zero downtime, or “Always On,” has become a
must-have for successful digital transformation in a global economy.

EDB Postgres Distributed (PGD), previously known as Postgres-BDR or BDR, has a wide field of possible
applications, such as master data management, sharding, and data distribution. In this whitepaper, we
only focus on high availability, where PGD provides unparalleled protection from infrastructure issues,
combined with near zero-downtime maintenance and management capabilities. The PGD Always On
architecture for Postgres has become the industry-leading solution for highly available Postgres.

This white paper introduces the PGD technology and the EDB Postgres Distributed Always On architecture.

Introduction

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

EDB | WWW.ENTERPRISEDB.COM

04

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITYEDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

1. Overview of High
Availability in Postgres

EDB | WWW.ENTERPRISEDB.COM

05

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Overview of High Availability in Postgres

There are two fundamental approaches to high availability (HA) in ACID-compliant database systems:
(1) shared storage with interconnected memory and (2) database replication. Oracle Real Application Cluster
(RAC) is an example of the shared storage approach, which often requires expensive hardware to provide
good performance. Postgres uses a replication method, which allows Postgres HA solutions to run on
commodity hardware and in every cloud.

Traditional Postgres HA architectures leverage physical streaming replication, a binary mechanism in
which a primary server continuously sends database transaction logs, or write ahead logs (WAL), to a
standby server. This ensures that the standby has a copy of the transactions the primary has executed.
In case of a failure on the primary server, the standby could easily be promoted to become an active
primary and resume the service. Failover Manager from EDB and repmgr are industry-leading technologies
supporting up to 99.99% availability for Postgres.

HA with streaming replication is limited in two key ways: (1) in case of failure, it takes a minimum of
20-30 seconds to identify and verify the failure, fence the old primary, and promote the standby to become
the new primary because physical replication only supports a single primary node at a time; (2) the primary
server and the replica need to be binary compatible, which means they must be on the same major Postgres
version, which in turn requires that both the primary and standby be taken offline together during a major
version upgrade. Streaming replication also does not help execute other maintenance operations, such as
reindexing, without downtime. These limitations constrain streaming replication to applications that require
99.99% of availability and can have planned downtimes for major upgrades.

HA based on logical multi-master replication changes the paradigm. In this paradigm : (1) each member
of an HA cluster can accept transactions at any time, so that in the case of a failure of the current primary,
the application can immediately start transacting on another server without first waiting for the cluster
infrastructure to ascertain the failure and promote a replica; (2) logical replication supports Postgres servers
of different major versions, which means rolling upgrades are possible without ever shutting down the
service. While logical replication has other advantages, these two capabilities allow EDB Postgres Distributed
to use logical replication to create true Always On architectures that can achieve up to 99.999% availability.

https://www.enterprisedb.com/docs/efm/latest/
https://repmgr.org

EDB | WWW.ENTERPRISEDB.COM

06

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITYEDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

2. Replication in Postgres

EDB | WWW.ENTERPRISEDB.COM

07

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Replication in Postgres

2.1 History of replication in Postgres

Figure 1: EDB Contributions to logical replication in PostgreSQL

The very first replication and high availability solutions for Postgres, Londiste and Slony, were external
projects that used trigger-based logical replication.

Postgres streaming replication was introduced in Postgres 9.0 to improve the performance and reduce
the latency of transaction log-shipping, which had been introduced in 8.2. Streaming replication also
reduced the extent of data loss in case of a failure of the primary database server. Postgres 9.1
introduced hot standby feedback and synchronous replication.

Subsequently, this infrastructure was built out to add the foundational capabilities for robust logical
replication. For example: Event Triggers that fired on DDL statements, replication slots to coordinate
activity on streaming standbys, replication of truncate statements, support of Logical Replication on
Partitioned Tables, and so on. The EDB team contributed and/or committed most of these features
from the PGD project for the PostgreSQL community.

EDB | WWW.ENTERPRISEDB.COM

08

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

2.2 The Limitations of PostgreSQL Logical Replication for HA

PostgreSQL Native Logical Replication (PNLR) was introduced in Postgres 10 in 2017. PNLR made major
version upgrades possible without trigger-based technologies such as Slony or Londiste, which was a
significant improvement over existing replication technology.

However, even in 2023 , there are still fundamental limitations with PNLR when being considered as part
of highly available solutions. Examples of such limitations include but are not limited to:

DDL operations are not replicated. Operations such as creating and dropping tables need to be
performed independently on each node. Since there is no way to ensure transaction consistency of
performing DDL operations, additional maintenance windows, where the database is receiving no
database traffic, are required. This detracts from the system’s ability to be highly available.

In PNLR there is no ability to fail over. If either the source or the target node goes down, during a
heavy period of replication traffic, a significant risk exists that the entire replication process for
a given set of tables will need to be restarted, and previously replicated data will need to be resent.
Therefore, Postgres servers using PNLR are at greater risk than Postgres physical replicas for having
significant data loss when taking over as the primary data source for an application as a
result of the current primary data source failing.

To properly identify updated and deleted rows during replication, logical replication systems
require that each row in a replicated table have a primary key. The primary key needs to be unique
across all nodes in the cluster. PNLR provides no built-in mechanism to ensure that newly created
and unique records on different nodes don’t have the same primary key. The risk is that completely
different records in a cluster are represented as the same record. Creating the assurance of unique
primary keys is entirely the responsibility of the application developer. Therefore, for advanced
cases such as High Availability, PNLR is error prone, which can result in data divergences and
inconsistencies across the cluster.

PNLR is not integrated with backup and recovery solutions.

While PNLR is a nice feature, it does not come with best practices and proven architectures
for achieving common tasks, such as procedures to use PLNR for upgrades and maintenance
operations. Such operations need to be built and extensively tested for each deployment.

PNLR only replicates in one direction. Therefore, when used in an upgrade scenario, if things
go wrong after the upgrade and you encounter an issue, going back to a previous version of the
database software is very complex and potentially impossible if not properly planned for in advance.

EDB | WWW.ENTERPRISEDB.COM

09

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITYEDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

3. Overcoming PostgreSQL
HA limitations with EDB
Postgres Distributed

EDB | WWW.ENTERPRISEDB.COM

10

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Overcoming PostgreSQL HA limitations
with EDB Postgres Distributed

3.1 What is EDB Postgres Distributed?

EDB Postgres Distributed (PGD) is a Postgres database solution that enables Extreme High Availability
(EHA)for Postgres clusters with up to 99.999% availability.. It does this using a standard Postgres extension
through logical replication of data and schema in a mesh-based multi-master architecture, plus a proxy for
directing connections globally and locally, and a robust set of features and tooling to manage conflicts and
monitor performance. This means applications with the most stringent demands can be run with confidence
on Postgres.

PGD is asynchronous by default, uses a mesh topology, and creates active-active architectures based on
Postgres logical replication.

PGD was built by the team that contributed many of the foundational replication capabilities in Postgres. It
was designed in conjunction with customers to allow them to replace complex, costly legacy solutions with
modern, highly available databases capable of rolling upgrades.

3.2 What is different about EDB Postgres Distributed?

EDB Postgres Distributed takes Postgres replication to the next level. It builds on logical replication

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Automatic DDL and DML replication in an active-active mesh network

Failover and switchover infrastructure to re-route traffic in case of failures or during
maintenance operation

Advanced conflict detection and conflict management

Management of distributed sequences

Differentiated replication sets to control which data gets replicated and to which
downstream databases

EDB | WWW.ENTERPRISEDB.COM

11

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITYEDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Cluster expansion/consolidation

Rolling database software upgrades

Rolling schema change/migration using cross-schema replication

Recovery from user error through solid integration with backup and recovery tools. Improved
security model making sure that all changes get replayed with minimal security privileges

EDB Postgres Distributed has a wide field of possible applications, such as master data management,
sharding, and data distribution. In this whitepaper, we only focus on EDB Postgres Distributed for high
availability, where it delivers several additional features that allow administrators to control the latency/
consistency trade-off:

Column-Level Conflict Resolution. Ability to have per column level granularity for conflict resolution
so that UPDATEs on different fields can be ‘merged’ without losing either change.

Conflict-free Replicated Data Types (CRDT). Mathematically proven data types with demonstrated
consistency in asynchronous multi-master update scenarios, for when conflicts are expected.

Transform Triggers. Filters, modifies or transforms incoming data with triggers activated on data before
they are applied.

Conflict Triggers. Custom conflict resolution techniques that can be implemented with triggers that are
activated when a conflict is detected.

Eager Replication. Provides conflict free replication by ensuring that all nodes can commit before allowing
the local node to commit.

Commit At Most Once (CAMO). A consistency feature that helps an application understand whether a
commit was received or the transaction aborted, even across single node failure. That way an application
can be written to be idempotent and need never miss a transaction or commit it more than once, while
remaining available most of the time.

Group Commit. Synchronous replication, which requires a user defined quorum within a replication group
before committing a transaction.

Rapid node join (bdr_init_physical). Utility to rapidly join nodes into the cluster using physical replication;
important for large Postgres databases.

LiveCompare. High speed verification utility to confirm that replication is exactly accurate across nodes,
working with multiple Postgres databases, across Postgres cluster nodes and also against Oracle. Designed
and integrated with EDB Postgres Distributed for continuous live usage.

EDB | WWW.ENTERPRISEDB.COM

12

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITYEDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

EDB | WWW.ENTERPRISEDB.COM

13

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITYEDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

4. Always On Architectures

EDB | WWW.ENTERPRISEDB.COM

14

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Always On Architectures

Always On architectures for EDB Postgres Distributed are highly standardized, proven, and reliable Postgres
architectures for achieving up to 99.999% database availability on premises or in the public cloud. Always On
is available in several variations. In this paper we focus on the variation that is designed to provide local HA
in two redundant data centers—an active data center and a passive data center—both configured identically.
Other variations of the Always On architecture include, but are not limited to:

Figure 2: EDB Postgres Distributed EDB Postgres Distributed Always On architecture for local high availability
in two data centers locations

EDB | WWW.ENTERPRISEDB.COM

15

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

4.1 Key components of the EDB Postgres Distributed Always On architecture

Lead Master. A Postgres server in read/write mode with the EDB Postgres Distributed extension installed.
The Lead Master receives the write transactions and the read requests from the application. It is in a logical
replication relationship with all other PGD nodes.

Shadow Master. The Shadow Master is a read/write enabled Postgres server that does not currently receive
traffic from the application, but it continuously replicates from the Lead Master and all other PGD nodes. In
case of failure or switchover, the Shadow Master can take over almost immediately for the Lead Master.

Logical Standby. The Logical Standby is a read-only Postgres node that replicates from the Shadow Master.
It can be used for offloading of read transactions. Its primary role is to replace one of the masters in case of
hardware failure, so that local HA can be re-established quickly.

PGD-Proxy. The PGD-Proxy provides connection routing and makes sure that in case of a failure of the Lead
Master, all subsequent database connections are successfully and reliably redirected to the Shadow Master.

pgBouncer. pgBouncer provides connection pooling to allow multiple application instances to connect to
the PGD databases. Depending on the usage pattern, it can be configured in session mode or in transaction
mode.

Multi-host connection string. Applications use a multi-host connection string to allow for rapid failover to a
second PGD-proxy pair in case of a hardware failure.

Barman. The Barman server provides backup and recovery, especially for PITR use cases to protect against
operator error or data corruption.

PGD Witness Node. A witness node is positioned in a third location to provide a quorum in case of a data
center failure.

Trusted Postgres Architect (TPA). EDB’s tool to deploy and operationally manage trusted Postgres
architectures, such as Always On.

EDB Postgres Enterprise Manager® can monitor PGD and its components.

EDB | WWW.ENTERPRISEDB.COM

16

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

4.2 How it works and how it solves problems

EDB Postgres Distributed Always On handles failures, switchovers, and other maintenance operations within
the 99.999% EHA boundaries. Here we illustrate a few of the most common scenarios:.

4.2.1 What happens when the Lead Master fails?
PGD consensus detects the failure of the node and switches all traffic at the PGD Proxy level to one of the
Shadow Masters, which now becomes the new Lead Master. the Shadow Master. Failure detection and
switching of the traffic happens within a few seconds. As the Shadow Master is able to receive update
transactions at any time, service resumes almost immediately.

4.2.2 How do I switch the traffic from Lead Master to Shadow Master to execute
maintenance operations?

Using Trusted Postgres Architect, the administrator drains all connections on pgBouncer, and then
reconnects pgBouncer to the Shadow Master. The use of Trusted Postgres Architect helps to ensure
that all EDB Postgres Distributed Always On components are aligned during this operation.

4.2.3 What happens when one of my PGD Proxy nodes fails?

The applications use a multi-host connection string. When the server at the primary address in the
connection string fails, then the application can immediately connect to the second PGD Proxy server.
PGD makes sure that both PGD Proxy pairs point to the same PGD master and traffic immediately resumes.

4.2.4 What happens when a data center fails?

The management plane of the application will either redirect the application connections to the secondary
data center, or—what is generally considered best practice—all inbound traffic is redirected to application
servers in the second data center.

4.3 Using EDB Postgres Distributed with EDB’s Postgres server distributions

PGD is implemented as a Postgres extension and works with several distributions of PostgreSQL. PGD 3.7.9

and later supports EDB Postgres Advanced Server in Postgres or Oracle compatibility mode, EDB Postgres
Extended Server (formerly known as 2ndQuadrant Postgres), and community PostgreSQL.

EDB Postgres Distributed’s essential features are available no matter which version of Postgres you use.
However, some of the advanced features such as group commit, eager consistency and CAMO (commit at
most once) are only available using supported versions of EDB Postgres Extended Server (11-15) and will be
available with EDB Postgres Advanced Server (14-15).

EDB | WWW.ENTERPRISEDB.COM

17

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

The following tables provide further details on both essential and advanced features of PGD available based
on the Postgres version used.

Feature PostgreSQL Postgres
Extended

Postgres
Advanced

Supported Version 11-15 11-15 11-15

Rolling application and database upgrades to address the largest
source of downtime

Asynchronous replication with origin based row-level
last-update wins eventual consistency

Synchronous replication (PostgreSQL core is not conflict-free)

DDL replication with granular locking supports changes
to application schema, ideal for use in continuous release envi-
ronments
Sub-groups with subscribe-only nodes enable data
distribution use cases for applications with very high
 read scaling requirements
Sequence handling provides applications different options for
generating unique surrogate ids that are multi-node aware

Tools to monitor operation and verify data consistency

Parallel apply allows multiple writer processes to apply
transactions on the downstream node improving throughput up
to 5X
Conflict-free replicated data types (CRDTs) provide mathemati-
cally proven consistency in asynchronous multi-master update
scenarios
Column-level conflict resolution enables per column
last-update wins resolution to merge updates

Transform triggers execute on incoming data for modifying
or advanced programmatic filtering

Conflict triggers provide custom resolution techniques when
a conflict is detected
Eager replication provides conflict free replication by
synchronizing across cluster nodes before committing
a transaction
Commit at most once (CAMO) consistency guards application
transactions even in the presence of node failures (v14+)

Single decoding worker improves performance on upstream
node by doing logical decoding of WAL once instead of for each
downstream node

v13+ (v14+)

Tooling to assess applications for distributed
database suitability (v14+)

EDB | WWW.ENTERPRISEDB.COM

18

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITYEDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

5. Conclusion

EDB | WWW.ENTERPRISEDB.COM

19

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

Conclusion

EDB Postgres Distributed, with the Always On architecture, is the industry leading solution for Postgres High
Availability. EDB Postgres Distributed’s Always On architectures enables customers for the first time to use
Postgres for 99.999% EHA availability solutions—a domain that was traditionally reserved for a few select
commercial database products.

Learn more about EDB Postgres Distributed

https://www.enterprisedb.com/products/bidirectional-replication-bdr-postgresql-database

EDB | WWW.ENTERPRISEDB.COM

20

EDB POSTGRES DISTRIBUTED: THE NEXT GENERATION OF POSTGRES HIGH AVAILABILITY

EDB provides enterprise-class software and services that enable
businesses and governments to harness the full power of Postgres, the world’s
leading open source database. With offices worldwide, EDB serves more than

1,500 customers, including leading financial services, government, media
and communications and information technology organizations. As one of the
leading contributors to the vibrant and fast-growing Postgres community, EDB
is committed to driving technology innovation. With deep database expertise,
EDB ensures extreme high availability, reliability, security, 24x7 global support

and advanced professional services, both on premises and in the cloud.
This empowers enterprises to control risk, manage costs and scale

efficiently. For more information, visit www.enterprisedb.com.

About EDB

https://www.enterprisedb.com

EDB Postgres Distributed
The Next Generation
of Postgres High Availability

© Copyright EnterpriseDB Corporation 2023
EnterpriseDB Corporation
34 Crosby Drive
Suite 201
Bedford, MA 01730

EnterpriseDB and Postgres Enterprise Manager are
registered trademarksof EnterpriseDB Corporation.
EDB, EnterpriseDB, EDB Postgres, Postgres Enterprise
Manager, and Power to Postgres are trademarks
of EnterpriseDB Corporation. Oracle is a registered
trademark of Oracle, Inc. Other trademarks may be
trademarks of their respective owners. Postgres
and the Slonik Logo are trademarks or registered
trademarks of the Postgres Community Association
of Canada, and used with their permission.

P O W E R T O P O S T G R E S

