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NODE
  a data item

EDGE
a link between 
nodes, often one 
direction only

What is a Graph?



● Mixed Models are common
● IATA Data Model
● Bill of Materials (...but never was just a tree)
● Hypertext has multiple directed references (URIs)
● Social Media applications
● Criminal/Fraud analysis

● Some parts of many applications...

● GIS/Mapping applications? No, use pgRouting!

Why should PostgreSQL users care?



Start with a very simple Graph



CREATE TABLE nodes

(Node INTEGER NOT NULL
,Primary Key (Node));

CREATE TABLE edges
(FromNode INTEGER NOT NULL

References nodes (Node)
,ToNode     INTEGER NOT NULL

References nodes (Node)
,Primary Key(FromNode, ToNode));

Relational Model of Graph



● SELECT n2.node
FROM nodes n1 JOIN edges e
  ON n1.node = e.fromnode
JOIN nodes n2
  ON e.tonode = n2.node
WHERE n1.node = ?;

● Then execute SQL “N” times times to traverse the 
whole graph

● Seems inelegant….maybe we need...

Simple SQL to traverse graph



● https://en.wikipedia.org/wiki/Graph_database
"Retrieving data from a graph database requires a query language other than SQL, which was designed for 
the manipulation of data in a relational system and therefore cannot “elegantly” handle traversing a graph."

● Proprietary Languages
○ Neo4j - Cypher => AgensGraph 
○ TigerGraph - GSQL
○ ArangoDB - AQL

● SPARQL - all of which can be written in SQL
● GQL

...a Query Language other than SQL?

https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/SQL


● Oracle SQL has supported CONNECT BY … PRIOR syntax for ~30 yrs

● SQL Standard has supported WITH RECURSIVE syntax since SQL:1999

● PostgreSQL has supported SQL Standard syntax for recursive queries 
since 8.4 on July 1, 2009,
so fully working and available for >12 years... 

Recursive Queries in SQL



with recursive
search_graph(node ,edges ,path)
as (

select *, ARRAY[g.node]
from graph g where node = 1 

union all
select g.node ,g.edges
  ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

) select * from search_graph
order by node;

Example SQL query WITH RECURSIVE



Using PostgreSQL arrays

CREATE TABLE graph

(Node INTEGER NOT NULL
,Edges INTEGER[]
,Primary Key (Node));

● Uses single table
● Denormalized with an array of integers
● FKs not required, just optional
● Simplifies indexes and queries
● Use row types for edge array
● Bidirectional graphs need multiple DML
● Don’t try to use CTIDs!

SELECT * FROM graph
ORDER BY node;
 node |  edges  
------+---------
    1 | {2,3,4}
    2 | 
    3 | 
    4 | {5}
    5 | 
(5 rows)

Post-relational Graph Model



Recursive SQL Query

with recursive
search_graph(node ,edges ,path)
as (

select node, edges, ARRAY[g.node]
from graph g where node = 1 

union all
select g.node ,g.edges
  ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node |  edges  
------+---------
    1 | {2,3,4}
    2 | 
    3 | 
    4 | {5}
    5 | 
(5 rows)

Postgres Graph Query (1)



Defining the initial/non-recursive term

with recursive
search_graph(node ,edges ,path)
as (

select node, edges, ARRAY[g.node]
from graph g where node = 1 

union all
select g.node ,g.edges
  ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node |  edges  
------+---------
    1 | {2,3,4}
    2 | 
    3 | 
    4 | {5}
    5 | 
(5 rows)

Postgres Graph Query (2)



Defining the recursive term

with recursive
search_graph(node ,edges ,path)
as (

select node, edges, ARRAY[g.node]
from graph g where node = 1 

union all
select g.node ,g.edges
  ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node |  edges  
------+---------
    1 | {2,3,4}
    2 | 
    3 | 
    4 | {5}
    5 | 
(5 rows)

Postgres Graph Query (3)



● See all paths between all nodes? - lots of rows returned!

● See all paths between any two nodes?
○ Need to add a WHERE clause to filter results
○ Helps reduce the size of final results

● See one path, e.g. shortest path between two nodes
○ Add further clauses to remove intermediate results

● More tightly defined queries execute faster (Analytics → OLTP)

What type of query results do you want?



● If the edges cause cycles in the graph, the query and continue forever
● Maybe your data does not contain cycles now, but it might in the 

future, so you should add non-cycling clauses to the query

● Also possible for there to be multiple paths between two nodes, which 
can magnify the search time significantly

● May need to add clauses to the query to remove multi-path

Problems in the data?



Preventing cycles in the query

with recursive
search_graph(node ,edges ,path)
as (

select node, edges, ARRAY[g.node]
from graph g where node = 1 

union all
select g.node ,g.edges
  ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

     and g.node <> all(sg.path)
) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node |  edges  
------+---------
    1 | {2,3,4}
    2 | 
    3 | 
    4 | {5}
    5 | {1}   CYCLE!
(5 rows)

Postgres Graph Query (5)



Collecting depth/level info during execution

with recursive
search_graph(node ,edges ,path, level)
as (

select node, edges, ARRAY[g.node], 1
from graph g where node = 1 

union all
select g.node ,g.edges
  ,path || g.node, level+1
from graph g, search_graph sg
where g.node = any(sg.edges)

     and g.node <> all(sg.path)
) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node |  edges  
------+---------
    1 | {2,3,4}
    2 | 
    3 | 
    4 | {5}
    5 | {1}
(5 rows)

Postgres Graph Query (6)



Removing multiple paths (1 of 2 ways)

with recursive
search_graph(node ,edges ,path, level)
as (select node, edges, ARRAY[g.node], 1

 from graph g where node = 1 
union all

select id, edge, path, level from (
select g.node ,g.edges
  ,path || g.node, level+1,
row_number() OVER (PARTITION BY sg.id, k.edge ORDER BY sg.level) as rn
from graph g, search_graph sg
where g.node = any(sg.edges)

     and g.node <> all(sg.path)
) sg_all where rn = 1 
) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node |  edges  
------+---------
    1 | {2,3,4}
    2 | 
    3 | 
    4 | {5}
    5 | {1}
    5 | {1}
(6 rows)

Postgres Graph Query (7)



EXPLAIN (COSTS OFF) shows efficient index paths

 Sort
   Sort Key: search_graph.node
   CTE search_graph
     ->  Recursive Union
           ->  Index Scan using graph_pkey on graph g
                 Index Cond: (node = 1)
           ->  Nested Loop
                 ->  WorkTable Scan on search_graph sg
                 ->  Index Scan using graph_pkey on graph g_1
                       Index Cond: (node = ANY (sg.edges))
                       Filter: (node <> ALL (sg.path))
   ->  CTE Scan on search_graph
(12 rows)

Postgres Graph Query - EXPLAIN



Shortest path query, avoiding loops, removing multipaths
with recursive
search_graph(id, edge, path, level) as (
select k_person1id, edge, ARRAY[k_person1id], 1
 from knows2 k
 where k_person1id = :person1Id::bigint
union all 
select id, edge, path, level from (
 select sg.id as id, k.edge, path || k.k_person1id as path, sg.level+1 as level
       ,row_number() OVER (PARTITION BY sg.id, k.edge ORDER BY sg.level) as rn
  from knows2 k, search_graph sg
  where k.k_person1id = any(sg.edge)
    and k.k_person1id <> all(path)
 ) sg_all where rn = 1 
)
select level from search_graph
where :person2Id::bigint = any(edge)
limit 1;

Postgres Graph Query (Full example)



PG14 raw plan
                                                                            QUERY PLAN                                                                            
------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=20282226.50..20282231.00 rows=1 width=4) (actual time=1774.962..1774.965 rows=1 loops=1)
   CTE search_graph
     ->  Recursive Union  (cost=0.42..20282226.50 rows=391385 width=52) (actual time=0.012..1774.861 rows=221 loops=1)
           ->  Index Only Scan using knows_pkey on knows k  (cost=0.42..31.74 rows=875 width=52) (actual time=0.011..0.014 rows=10 loops=1)
                 Index Cond: (k_person1id = '1'::bigint)
                 Heap Fetches: 0
           ->  Subquery Scan on sg_all  (cost=1715031.75..2027436.71 rows=39051 width=52) (actual time=441.342..443.690 rows=53 loops=4)
                 Filter: (sg_all.rn = 1)
                 Rows Removed by Filter: 2948
                 ->  WindowAgg  (cost=1715031.75..1929810.16 rows=7810124 width=64) (actual time=441.340..443.485 rows=3000 loops=4)
                       ->  Sort  (cost=1715031.75..1734557.06 rows=7810124 width=60) (actual time=441.242..441.466 rows=3002 loops=4)
                             Sort Key: sg.id, k_1.k_person2id, sg.level
                             Sort Method: quicksort  Memory: 26kB
                             ->  Hash Join  (cost=33249.47..233607.06 rows=7810124 width=60) (actual time=268.630..439.844 rows=3002 loops=4)
                                   Hash Cond: (sg.edge = k_1.k_person1id)
                                   Join Filter: (k_1.k_person1id <> ALL (sg.path))
                                   ->  WorkTable Scan on search_graph sg  (cost=0.00..175.00 rows=8750 width=52) (actual time=0.001..0.022 rows=55 loops=4)
                                   ->  Hash  (cost=15622.21..15622.21 rows=1014021 width=16) (actual time=268.322..268.322 rows=1014021 loops=4)
                                         Buckets: 131072 (originally 131072)  Batches: 32 (originally 16)  Memory Usage: 3556kB
                                         ->  Seq Scan on knows k_1  (cost=0.00..15622.21 rows=1014021 width=16) (actual time=0.006..105.387 rows=1014021 loops=4)
   ->  CTE Scan on search_graph  (cost=0.00..8806.16 rows=1957 width=4) (actual time=1774.961..1774.961 rows=1 loops=1)
         Filter: (edge = '100000'::bigint)
         Rows Removed by Filter: 220
 Planning Time: 0.244 ms
 Execution Time: 1775.501 ms

Postgres Graph Query (EXPLAIN ANALYZE)



PG14 plus reduced estimate
                                                                                QUERY PLAN                                                                               
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=2080213.70..2080218.20 rows=1 width=4) (actual time=17.119..17.121 rows=1 loops=1)
   CTE search_graph
     ->  Recursive Union  (cost=0.42..2080213.70 rows=39925 width=52) (actual time=0.014..17.035 rows=221 loops=1)
           ->  Index Only Scan using knows_pkey on knows k  (cost=0.42..31.74 rows=875 width=52) (actual time=0.013..0.016 rows=10 loops=1)
                 Index Cond: (k_person1id = '1'::bigint)
                 Heap Fetches: 0
           ->  Subquery Scan on sg_all  (cost=176697.87..207938.35 rows=3905 width=52) (actual time=1.902..4.236 rows=53 loops=4)
                 Filter: (sg_all.rn = 1)
                 Rows Removed by Filter: 2948
                 ->  WindowAgg  (cost=176697.87..198175.70 rows=781012 width=64) (actual time=1.901..4.033 rows=3000 loops=4)
                       ->  Sort  (cost=176697.87..178650.40 rows=781012 width=60) (actual time=1.801..2.020 rows=3002 loops=4)
                             Sort Key: sg.id, k_1.k_person2id, sg.level
                             Sort Method: quicksort  Memory: 26kB
                             ->  Nested Loop  (cost=0.42..41526.38 rows=781012 width=60) (actual time=0.007..0.931 rows=3002 loops=4)
                                   ->  WorkTable Scan on search_graph sg  (cost=0.00..17.50 rows=875 width=52) (actual time=0.000..0.005 rows=55 loops=4)
                                   ->  Index Only Scan using knows_pkey on knows k_1  (cost=0.42..38.51 rows=893 width=16) (actual time=0.003..0.010 rows=55 loops=220)
                                         Index Cond: (k_person1id = sg.edge)
                                         Filter: (k_person1id <> ALL (sg.path))
                                         Heap Fetches: 0
   ->  CTE Scan on search_graph  (cost=0.00..898.31 rows=200 width=4) (actual time=17.119..17.119 rows=1 loops=1)
         Filter: (edge = '100000'::bigint)
         Rows Removed by Filter: 220
 Planning Time: 0.173 ms
 Execution Time: 17.198 ms

Postgres Graph Query (EXPLAIN ANALYZE)

x100 faster!



● Linked Data Benchmark Council (LDBC)
○ Same team who published TPC-H analyses

● Social Network Benchmark (SNB)
● All queries can be expressed in SQL for PostgreSQL
● Graph OLTP Benchmark

○ PostgreSQL beats Neo4j Community Edition

● Graph BI Benchmark

PostgreSQL Graph Query Performance



● Alibaba Cloud published details of a PostgreSQL graph benchmark at 
12,000TPS/2.1ms per query with 5 billion nodes

● https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/
● “Database Performance Comparisons: An Inspection of Fairness”, Uwe Hohenstein 

and Martin Jergler, 2019

○ “Moreover, we refute some stated issues about the bad performance of relational systems by using a 

PostgreSQL database for commonly used test scenarios.”
● Various papers on PostgreSQL on LDBC Benchmarks

Other PostgreSQL Performance Results



● SQL Standard features added for recursive (graph) queries

● [ SEARCH (BREADTH | DEPTH) FIRST BY col, …
   SET search_seq_col_name]

● [CYCLE col, … SET cycle_mark_col_name
   [TO cycle_mark_value DEFAULT cycle_mark_default]

   USING cycle_path_col_name]

PostgreSQL 14 features



Shortest path query, avoiding loops, removing multipaths

with recursive
search_graph(id, edge, level)
as (
select k_person1id, k_person2id, 1
 from knows k
 where k_person1id = :person1Id::bigint
union all 
select sg.id, k.k_person2id, sg.level+1
 from knows k, search_graph sg
 where k.k_person1id = sg.edge
) cycle id, edge set is_cycle using path
select level from search_graph
where edge = :person2Id::bigint
limit 1;

Postgres Graph Query (New PG14)



● CREATE VIEW <table name> AS
WITH RECURSIVE <table name> (<view column list>)

AS (<query expression>)

SELECT <view column list> FROM <table name>

● Encapsulates complexity, so many developers can use recursive 
queries easily without needing to understand them

PostgreSQL Usage Simplification



● Execute recursive DML for
○ UPDATE
○ INSERT
○ DELETE

● Feature is unique extension in SQL for PostgreSQL

PostgreSQL Recursive DML



● Everything discussed can work with any data type
○ Normal columns: Integers/BigInt, Text/URLs
○ Row Types
○ Document types: JSON/JSONB, XML

● Graph Schema can be easily and significantly customized by you to 
include your additional requirements, without affecting performance

PostgreSQL Multi-Model DBMS



● SQL:202(n) will contain SQL/PGQ
○ PGQ=Property Graph Query

● New graph query language GQL, separate from SQL

SQL Standard Roadmap



Native graph query syntax in SQL

select start_id, end_id
from graph graph_table (
  match (n1:node)-[:edge{1,5}]->(n2:node)
  columns n1.id as start_id, n2.id as end_id
)
order by start_id;

SQL/PGQ Example



● https://stackoverflow.com/questions/20776718/best-way-to-model-graph-data-in-
postgresql
"I realize dedicated graph databases like [GraphDB] are best suited for this, ..."      
Closed. This question is opinion-based.

● https://www.reddit.com/r/PostgreSQL/comments/8mdsxr/does_postgresql_11_su
pport_graph_database/

"I do not see any support for graph database in PostgreSQL 11 Beta 1. I thought it 
was planned on the roadmap."

● Joe Celko's book "Trees & Hierarchies in SQL for Smarties" (2012) does cover graphs, 
but not detailed enough

Poor Market Understanding?

https://stackoverflow.com/help/closed-questions


● Can one DBMS be best at everything? No

● Can a DBMS with huge numbers of contributors collect together to 
produce something no one mind could contemplate, covering 
multiple use cases?
Yes, but slowly

● Can one DBMS provide the facilities for multiple additional features 
via extensibility? Definitely

PostgreSQL
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EDB supercharges 
Postgres
Products, services, and support for teams who need to do more and go faster.

Databases Tools Deployments Expertise
PostgreSQL and extensions 

for enterprise workloads
On-prem to the cloud, virtual 

machines to Kubernetes
Monitoring, management, 
scalability, high availability

24/7 technical support, remote 
DBAs, professional services
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Key PostgreSQL Contributions

35

We’re the PostgreSQL 
experts

1986
The design 
of PostgreSQL

1996
Birth of 
PostgreSQL 

2004
EDB 
is founded

2007
2ndQuadrant 
launched

2020
EDB acquires
2ndQuadrant

EDB

• Heap Only Tuples (HOT)

• Materialized Views

• Parallel Query

• JIT Compilation

• Serializable Parallel Query

2ndQuadrant

• Hot Standby

• Logical Replication

• Transaction Control

• Generated Columns

No company has 
contributed 

more to 
PostgreSQL

EDB TEAM INCLUDES:

• 300+ PostgreSQL technologists

• 26 PostgreSQL community contributors 
and committers

• Including founders and leaders in 
PostgreSQL Community
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Michael Stonebraker
“Father of Postgres”

and EDB Advisor

Bruce Momjian
Co-founder, PostgreSQL 
Development Corp and 
PostgreSQL Core Team

Peter Eisentraut
PostgreSQL 

Core Team member

Robert Haas
PostgreSQL Major 

Contributor and Committer

Simon Riggs
PostgreSQL Major 

Contributor, Founder 
of 2ndQuadrant

300+ PostgreSQL technologists

26 PostgreSQL community contributors and committers

Including founders and leaders like

EDB team includes:

The most PostgreSQL experts
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EDB supported databases

EDB Postgres ExtendedPostgreSQL

Open source PostgreSQL EDB proprietary distribution

EDB Postgres Advanced

EDB proprietary distribution

• EDB continues to be committed 
to advancing features in 
collaboration with the broader 
community

• SQL compatible with 
PostgreSQL, extended for 
stringent availability and 
advanced replication needs

• Formerly known as 
2ndQPostgres

• SQL compatible with Oracle, 
reduces effort to migrate 
applications and 
data to PostgreSQL 

• Additional value-add enterprise 
features



Thank you


