
Graph Queries
with PostgreSQL
Simon Riggs Postgres Fellow

4Q 2021

NODE
 a data item

EDGE
a link between
nodes, often one
direction only

What is a Graph?

● Mixed Models are common
● IATA Data Model
● Bill of Materials (...but never was just a tree)
● Hypertext has multiple directed references (URIs)
● Social Media applications
● Criminal/Fraud analysis

● Some parts of many applications...

● GIS/Mapping applications? No, use pgRouting!

Why should PostgreSQL users care?

Start with a very simple Graph

CREATE TABLE nodes

(Node INTEGER NOT NULL
,Primary Key (Node));

CREATE TABLE edges
(FromNode INTEGER NOT NULL

References nodes (Node)
,ToNode INTEGER NOT NULL

References nodes (Node)
,Primary Key(FromNode, ToNode));

Relational Model of Graph

● SELECT n2.node
FROM nodes n1 JOIN edges e
 ON n1.node = e.fromnode
JOIN nodes n2
 ON e.tonode = n2.node
WHERE n1.node = ?;

● Then execute SQL “N” times times to traverse the
whole graph

● Seems inelegant….maybe we need...

Simple SQL to traverse graph

● https://en.wikipedia.org/wiki/Graph_database
"Retrieving data from a graph database requires a query language other than SQL, which was designed for
the manipulation of data in a relational system and therefore cannot “elegantly” handle traversing a graph."

● Proprietary Languages
○ Neo4j - Cypher => AgensGraph
○ TigerGraph - GSQL
○ ArangoDB - AQL

● SPARQL - all of which can be written in SQL
● GQL

...a Query Language other than SQL?

https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/SQL

● Oracle SQL has supported CONNECT BY … PRIOR syntax for ~30 yrs

● SQL Standard has supported WITH RECURSIVE syntax since SQL:1999

● PostgreSQL has supported SQL Standard syntax for recursive queries
since 8.4 on July 1, 2009,
so fully working and available for >12 years...

Recursive Queries in SQL

with recursive
search_graph(node ,edges ,path)
as (

select *, ARRAY[g.node]
from graph g where node = 1

union all
select g.node ,g.edges
 ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

) select * from search_graph
order by node;

Example SQL query WITH RECURSIVE

Using PostgreSQL arrays

CREATE TABLE graph

(Node INTEGER NOT NULL
,Edges INTEGER[]
,Primary Key (Node));

● Uses single table
● Denormalized with an array of integers
● FKs not required, just optional
● Simplifies indexes and queries
● Use row types for edge array
● Bidirectional graphs need multiple DML
● Don’t try to use CTIDs!

SELECT * FROM graph
ORDER BY node;
 node | edges
------+---------
 1 | {2,3,4}
 2 |
 3 |
 4 | {5}
 5 |
(5 rows)

Post-relational Graph Model

Recursive SQL Query

with recursive
search_graph(node ,edges ,path)
as (

select node, edges, ARRAY[g.node]
from graph g where node = 1

union all
select g.node ,g.edges
 ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node | edges
------+---------
 1 | {2,3,4}
 2 |
 3 |
 4 | {5}
 5 |
(5 rows)

Postgres Graph Query (1)

Defining the initial/non-recursive term

with recursive
search_graph(node ,edges ,path)
as (

select node, edges, ARRAY[g.node]
from graph g where node = 1

union all
select g.node ,g.edges
 ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node | edges
------+---------
 1 | {2,3,4}
 2 |
 3 |
 4 | {5}
 5 |
(5 rows)

Postgres Graph Query (2)

Defining the recursive term

with recursive
search_graph(node ,edges ,path)
as (

select node, edges, ARRAY[g.node]
from graph g where node = 1

union all
select g.node ,g.edges
 ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node | edges
------+---------
 1 | {2,3,4}
 2 |
 3 |
 4 | {5}
 5 |
(5 rows)

Postgres Graph Query (3)

● See all paths between all nodes? - lots of rows returned!

● See all paths between any two nodes?
○ Need to add a WHERE clause to filter results
○ Helps reduce the size of final results

● See one path, e.g. shortest path between two nodes
○ Add further clauses to remove intermediate results

● More tightly defined queries execute faster (Analytics → OLTP)

What type of query results do you want?

● If the edges cause cycles in the graph, the query and continue forever
● Maybe your data does not contain cycles now, but it might in the

future, so you should add non-cycling clauses to the query

● Also possible for there to be multiple paths between two nodes, which
can magnify the search time significantly

● May need to add clauses to the query to remove multi-path

Problems in the data?

Preventing cycles in the query

with recursive
search_graph(node ,edges ,path)
as (

select node, edges, ARRAY[g.node]
from graph g where node = 1

union all
select g.node ,g.edges
 ,path || g.node
from graph g, search_graph sg
where g.node = any(sg.edges)

 and g.node <> all(sg.path)
) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node | edges
------+---------
 1 | {2,3,4}
 2 |
 3 |
 4 | {5}
 5 | {1} CYCLE!
(5 rows)

Postgres Graph Query (5)

Collecting depth/level info during execution

with recursive
search_graph(node ,edges ,path, level)
as (

select node, edges, ARRAY[g.node], 1
from graph g where node = 1

union all
select g.node ,g.edges
 ,path || g.node, level+1
from graph g, search_graph sg
where g.node = any(sg.edges)

 and g.node <> all(sg.path)
) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node | edges
------+---------
 1 | {2,3,4}
 2 |
 3 |
 4 | {5}
 5 | {1}
(5 rows)

Postgres Graph Query (6)

Removing multiple paths (1 of 2 ways)

with recursive
search_graph(node ,edges ,path, level)
as (select node, edges, ARRAY[g.node], 1

 from graph g where node = 1
union all

select id, edge, path, level from (
select g.node ,g.edges
 ,path || g.node, level+1,
row_number() OVER (PARTITION BY sg.id, k.edge ORDER BY sg.level) as rn
from graph g, search_graph sg
where g.node = any(sg.edges)

 and g.node <> all(sg.path)
) sg_all where rn = 1
) select * from search_graph
order by node;

SELECT * FROM graph
ORDER BY node;
 node | edges
------+---------
 1 | {2,3,4}
 2 |
 3 |
 4 | {5}
 5 | {1}
 5 | {1}
(6 rows)

Postgres Graph Query (7)

EXPLAIN (COSTS OFF) shows efficient index paths

 Sort
 Sort Key: search_graph.node
 CTE search_graph
 -> Recursive Union
 -> Index Scan using graph_pkey on graph g
 Index Cond: (node = 1)
 -> Nested Loop
 -> WorkTable Scan on search_graph sg
 -> Index Scan using graph_pkey on graph g_1
 Index Cond: (node = ANY (sg.edges))
 Filter: (node <> ALL (sg.path))
 -> CTE Scan on search_graph
(12 rows)

Postgres Graph Query - EXPLAIN

Shortest path query, avoiding loops, removing multipaths
with recursive
search_graph(id, edge, path, level) as (
select k_person1id, edge, ARRAY[k_person1id], 1
 from knows2 k
 where k_person1id = :person1Id::bigint
union all
select id, edge, path, level from (
 select sg.id as id, k.edge, path || k.k_person1id as path, sg.level+1 as level
 ,row_number() OVER (PARTITION BY sg.id, k.edge ORDER BY sg.level) as rn
 from knows2 k, search_graph sg
 where k.k_person1id = any(sg.edge)
 and k.k_person1id <> all(path)
) sg_all where rn = 1
)
select level from search_graph
where :person2Id::bigint = any(edge)
limit 1;

Postgres Graph Query (Full example)

PG14 raw plan
 QUERY PLAN
--
 Limit (cost=20282226.50..20282231.00 rows=1 width=4) (actual time=1774.962..1774.965 rows=1 loops=1)
 CTE search_graph
 -> Recursive Union (cost=0.42..20282226.50 rows=391385 width=52) (actual time=0.012..1774.861 rows=221 loops=1)
 -> Index Only Scan using knows_pkey on knows k (cost=0.42..31.74 rows=875 width=52) (actual time=0.011..0.014 rows=10 loops=1)
 Index Cond: (k_person1id = '1'::bigint)
 Heap Fetches: 0
 -> Subquery Scan on sg_all (cost=1715031.75..2027436.71 rows=39051 width=52) (actual time=441.342..443.690 rows=53 loops=4)
 Filter: (sg_all.rn = 1)
 Rows Removed by Filter: 2948
 -> WindowAgg (cost=1715031.75..1929810.16 rows=7810124 width=64) (actual time=441.340..443.485 rows=3000 loops=4)
 -> Sort (cost=1715031.75..1734557.06 rows=7810124 width=60) (actual time=441.242..441.466 rows=3002 loops=4)
 Sort Key: sg.id, k_1.k_person2id, sg.level
 Sort Method: quicksort Memory: 26kB
 -> Hash Join (cost=33249.47..233607.06 rows=7810124 width=60) (actual time=268.630..439.844 rows=3002 loops=4)
 Hash Cond: (sg.edge = k_1.k_person1id)
 Join Filter: (k_1.k_person1id <> ALL (sg.path))
 -> WorkTable Scan on search_graph sg (cost=0.00..175.00 rows=8750 width=52) (actual time=0.001..0.022 rows=55 loops=4)
 -> Hash (cost=15622.21..15622.21 rows=1014021 width=16) (actual time=268.322..268.322 rows=1014021 loops=4)
 Buckets: 131072 (originally 131072) Batches: 32 (originally 16) Memory Usage: 3556kB
 -> Seq Scan on knows k_1 (cost=0.00..15622.21 rows=1014021 width=16) (actual time=0.006..105.387 rows=1014021 loops=4)
 -> CTE Scan on search_graph (cost=0.00..8806.16 rows=1957 width=4) (actual time=1774.961..1774.961 rows=1 loops=1)
 Filter: (edge = '100000'::bigint)
 Rows Removed by Filter: 220
 Planning Time: 0.244 ms
 Execution Time: 1775.501 ms

Postgres Graph Query (EXPLAIN ANALYZE)

PG14 plus reduced estimate
 QUERY PLAN
--
 Limit (cost=2080213.70..2080218.20 rows=1 width=4) (actual time=17.119..17.121 rows=1 loops=1)
 CTE search_graph
 -> Recursive Union (cost=0.42..2080213.70 rows=39925 width=52) (actual time=0.014..17.035 rows=221 loops=1)
 -> Index Only Scan using knows_pkey on knows k (cost=0.42..31.74 rows=875 width=52) (actual time=0.013..0.016 rows=10 loops=1)
 Index Cond: (k_person1id = '1'::bigint)
 Heap Fetches: 0
 -> Subquery Scan on sg_all (cost=176697.87..207938.35 rows=3905 width=52) (actual time=1.902..4.236 rows=53 loops=4)
 Filter: (sg_all.rn = 1)
 Rows Removed by Filter: 2948
 -> WindowAgg (cost=176697.87..198175.70 rows=781012 width=64) (actual time=1.901..4.033 rows=3000 loops=4)
 -> Sort (cost=176697.87..178650.40 rows=781012 width=60) (actual time=1.801..2.020 rows=3002 loops=4)
 Sort Key: sg.id, k_1.k_person2id, sg.level
 Sort Method: quicksort Memory: 26kB
 -> Nested Loop (cost=0.42..41526.38 rows=781012 width=60) (actual time=0.007..0.931 rows=3002 loops=4)
 -> WorkTable Scan on search_graph sg (cost=0.00..17.50 rows=875 width=52) (actual time=0.000..0.005 rows=55 loops=4)
 -> Index Only Scan using knows_pkey on knows k_1 (cost=0.42..38.51 rows=893 width=16) (actual time=0.003..0.010 rows=55 loops=220)
 Index Cond: (k_person1id = sg.edge)
 Filter: (k_person1id <> ALL (sg.path))
 Heap Fetches: 0
 -> CTE Scan on search_graph (cost=0.00..898.31 rows=200 width=4) (actual time=17.119..17.119 rows=1 loops=1)
 Filter: (edge = '100000'::bigint)
 Rows Removed by Filter: 220
 Planning Time: 0.173 ms
 Execution Time: 17.198 ms

Postgres Graph Query (EXPLAIN ANALYZE)

x100 faster!

● Linked Data Benchmark Council (LDBC)
○ Same team who published TPC-H analyses

● Social Network Benchmark (SNB)
● All queries can be expressed in SQL for PostgreSQL
● Graph OLTP Benchmark

○ PostgreSQL beats Neo4j Community Edition

● Graph BI Benchmark

PostgreSQL Graph Query Performance

● Alibaba Cloud published details of a PostgreSQL graph benchmark at
12,000TPS/2.1ms per query with 5 billion nodes

● https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/
● “Database Performance Comparisons: An Inspection of Fairness”, Uwe Hohenstein

and Martin Jergler, 2019

○ “Moreover, we refute some stated issues about the bad performance of relational systems by using a

PostgreSQL database for commonly used test scenarios.”
● Various papers on PostgreSQL on LDBC Benchmarks

Other PostgreSQL Performance Results

● SQL Standard features added for recursive (graph) queries

● [SEARCH (BREADTH | DEPTH) FIRST BY col, …
 SET search_seq_col_name]

● [CYCLE col, … SET cycle_mark_col_name
 [TO cycle_mark_value DEFAULT cycle_mark_default]

 USING cycle_path_col_name]

PostgreSQL 14 features

Shortest path query, avoiding loops, removing multipaths

with recursive
search_graph(id, edge, level)
as (
select k_person1id, k_person2id, 1
 from knows k
 where k_person1id = :person1Id::bigint
union all
select sg.id, k.k_person2id, sg.level+1
 from knows k, search_graph sg
 where k.k_person1id = sg.edge
) cycle id, edge set is_cycle using path
select level from search_graph
where edge = :person2Id::bigint
limit 1;

Postgres Graph Query (New PG14)

● CREATE VIEW <table name> AS
WITH RECURSIVE <table name> (<view column list>)

AS (<query expression>)

SELECT <view column list> FROM <table name>

● Encapsulates complexity, so many developers can use recursive
queries easily without needing to understand them

PostgreSQL Usage Simplification

● Execute recursive DML for
○ UPDATE
○ INSERT
○ DELETE

● Feature is unique extension in SQL for PostgreSQL

PostgreSQL Recursive DML

● Everything discussed can work with any data type
○ Normal columns: Integers/BigInt, Text/URLs
○ Row Types
○ Document types: JSON/JSONB, XML

● Graph Schema can be easily and significantly customized by you to
include your additional requirements, without affecting performance

PostgreSQL Multi-Model DBMS

● SQL:202(n) will contain SQL/PGQ
○ PGQ=Property Graph Query

● New graph query language GQL, separate from SQL

SQL Standard Roadmap

Native graph query syntax in SQL

select start_id, end_id
from graph graph_table (
 match (n1:node)-[:edge{1,5}]->(n2:node)
 columns n1.id as start_id, n2.id as end_id
)
order by start_id;

SQL/PGQ Example

● https://stackoverflow.com/questions/20776718/best-way-to-model-graph-data-in-
postgresql
"I realize dedicated graph databases like [GraphDB] are best suited for this, ..."
Closed. This question is opinion-based.

● https://www.reddit.com/r/PostgreSQL/comments/8mdsxr/does_postgresql_11_su
pport_graph_database/

"I do not see any support for graph database in PostgreSQL 11 Beta 1. I thought it
was planned on the roadmap."

● Joe Celko's book "Trees & Hierarchies in SQL for Smarties" (2012) does cover graphs,
but not detailed enough

Poor Market Understanding?

https://stackoverflow.com/help/closed-questions

● Can one DBMS be best at everything? No

● Can a DBMS with huge numbers of contributors collect together to
produce something no one mind could contemplate, covering
multiple use cases?
Yes, but slowly

● Can one DBMS provide the facilities for multiple additional features
via extensibility? Definitely

PostgreSQL

2021 Copyright © EnterpriseDB Corporation All Rights Reserved34

EDB supercharges
Postgres
Products, services, and support for teams who need to do more and go faster.

Databases Tools Deployments Expertise
PostgreSQL and extensions

for enterprise workloads
On-prem to the cloud, virtual

machines to Kubernetes
Monitoring, management,
scalability, high availability

24/7 technical support, remote
DBAs, professional services

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Key PostgreSQL Contributions

35

We’re the PostgreSQL
experts

1986
The design
of PostgreSQL

1996
Birth of
PostgreSQL

2004
EDB
is founded

2007
2ndQuadrant
launched

2020
EDB acquires
2ndQuadrant

EDB

• Heap Only Tuples (HOT)

• Materialized Views

• Parallel Query

• JIT Compilation

• Serializable Parallel Query

2ndQuadrant

• Hot Standby

• Logical Replication

• Transaction Control

• Generated Columns

No company has
contributed

more to
PostgreSQL

EDB TEAM INCLUDES:

• 300+ PostgreSQL technologists

• 26 PostgreSQL community contributors
and committers

• Including founders and leaders in
PostgreSQL Community

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Michael Stonebraker
“Father of Postgres”

and EDB Advisor

Bruce Momjian
Co-founder, PostgreSQL
Development Corp and
PostgreSQL Core Team

Peter Eisentraut
PostgreSQL

Core Team member

Robert Haas
PostgreSQL Major

Contributor and Committer

Simon Riggs
PostgreSQL Major

Contributor, Founder
of 2ndQuadrant

300+ PostgreSQL technologists

26 PostgreSQL community contributors and committers

Including founders and leaders like

EDB team includes:

The most PostgreSQL experts

36

2021 Copyright © EnterpriseDB Corporation All Rights Reserved37

EDB supported databases

EDB Postgres ExtendedPostgreSQL

Open source PostgreSQL EDB proprietary distribution

EDB Postgres Advanced

EDB proprietary distribution

• EDB continues to be committed
to advancing features in
collaboration with the broader
community

• SQL compatible with
PostgreSQL, extended for
stringent availability and
advanced replication needs

• Formerly known as
2ndQPostgres

• SQL compatible with Oracle,
reduces effort to migrate
applications and
data to PostgreSQL

• Additional value-add enterprise
features

Thank you

