eeeeeeeeeeeeeee

High Availability
& Replication: \ / ~

WER TO
Replication l[;g\sl\/_r GRES
Performance, 7INS

and why it matters

w EDB

@ EDB

Evolution of Replication

» Trigger-based Replication Slony, Londiste
* Physical File-based Replication PG8.2
* Physical Streaming Replication PG9.0

Logical Streaming Replication PG10

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.

2004
2006
2010
2017

O EDB
Why?
- Why does it matter how fast replication is?

- Why does it matter how fast persistence is?

Robustness and High Availability features are slow

3 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

synchronous_
commit

w EDB

O EDB

synchronous_commit = on

Means all WAL will be fsynced to disk before COMMIT

Ensures that any COMMIT is Durable

5 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

synchronous_commit = off

- Means report COMMIT to user before changes have gone to disk
For short transactions, can be ~10x faster, with slower disk technology

COMMITs may be lost if the server crashes

6 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

synchronous_commit = remote_apply

« Means wait for COMMIT to be applied to remote server(s)
(Assuming synchronous_standby_names is set)
Synchronous Replication
Can be much slower as we wait for round trip and apply
Most sessions spend a long time waiting for reply, so causes a drop in
throughput as well as loss of latency
Use more sessions when your applications require Sync Replication
Restricts from transactions on the origin node from going too fast for the
standby nodes

7 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

synchronous_commit = remote_write

Means wait for WAL for COMMIT to be written to remote server(s)
Synchronous Replication, with a performance boost

Slightly faster than remote_apply, since need not wait for apply

Also gives more consistent replication lag since effects that slow down
apply do not affect the response to origin client

However, still affected by origin tasks generating too much WAL, such as
CREATE INDEX, ALTER TABLE, VACUUM, VACUUM FULL, CLUSTER etc..

8 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

synchronous_commit = local

Means don't wait for WAL for COMMIT to be sent to remote server(s)
Asynchronous Replication

Faster on local node, but can allow the origin node to process transactions
faster than they can be applied, causing a backlog to develop
Typical cause of replication lag

9 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

Example

Server capable of 100k TPS

Replication capable of 25k TPS

Application exceeds 25k TPS then backlog begins to develop

If App runs at 75k TPS for 1 hours, then a backlog of 50k xacts will
develop, which would take 2 hours to clear on a quiet server, longer in
other cases

At failover, much data could be lost if this is not managed
Replication performance is very important for your data!

10 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

Replication
Architectures
& Performance

w EDB

O EDB

PostgreSQL Trigger-based Replication

Origin (Upstream)

~N
N

Target (Downstream)

user
backend

N
sender J

batches
shared_

buffers

Database

=8

shared
buffers

Database

12 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

PostgreSQL Physical Streaming Replication [PG9]

Origin (Upstream)

~
N

|

~N
N

walsender

user
backend

shared
buffers

— ¥V 5 <

Target (Downstream)
apply

—>[wa|receiver} (startup) }

shared
buffers

— ¥V =

13 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB
PostgreSQL Logical Streaming Replication [PG10]

Origin (Upstream) Target (Downstream)
\\ \\
N
user - »{ apply }
backend walsen erJ
shared shared
buffers_ buffers

_-‘

Database

14 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

Replication Architecture Comparisons

WAL Overhead on Origin
Network bandwidth used

Number/architecture of Processes performing work
Type of Apply (direct block/row search)

15 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

VLDB Issues

w EDB

O EDB

Physical: Row Hints and Index Queries

- Row hints are not passed across as WAL records in all cases

Indexes cannot trust that the item killed hint has been replicated, so index
searches are less than optimal in a table with UPDATEs

Can be a noticeable performance issue

17 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

Cache and 1/0 Effects

- To maintain good performance for replication, working set of database
must remain in cache
Any cache shortfall will become I/0

Architecture should allow 1/0 avoidance
Physical via Full Page Writes
Logical via Parallel Apply

=> Cache on replicas should match cache on origin

18 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

Type of Apply

- Physical
Direct block access
« Prefetch coming in PG15?
-« Logical
Rows searched using Primary Keys
« Index entries also need to be re-applied

+ Btree access is O(logN), while Hash indexes can be O(k)
« Hash indexes become more important for Logical Replication

19 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB
Basebackup & Catchup

- Basebackup needed as first stage of replication setup
Catchup starts when base backup ends

P = processing rate of Origin node
R = processing rate of Replication
T = time to take Basebackup

Catchup time= T*P
R-P

20 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

O EDB

Major Release Upgrades without downtime

Only possible with Logical Replication since significantly fewer
dependencies to specific release formats and behavior

Can VLDBs that rely on Physical Replication be upgraded sensibly?

21 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

Conclusions

w EDB

@ EDB

Maturity

» Trigger-based Replication

* Physical File-based Replication

* Physical Streaming Replication
Logical Streaming Replication
BDR3.6
BDR3.7

23 © Copyright EnterpriseDB Corporation, 2021. All rights reserved.

Slony, Londiste
PG8.2
PG9.0
PG10

2004
2006
2010
2017
2019
2021

Postgres BDR

Enhanced DROP triggers
Logical Decoding
Replication slots

Replica Identity

Create extension cascade Replicate TRUNCATE Logical Replication
Logical WAL messages Memory tuning on partitioned tables

Background workers Commit timestamps Publish pglogical pg_copy_logical_replication_slot() Streaming large
Event triggers Replication origins Logical Replication in-progress
DDL deparse transactions

Logical decoding enhancements

