
High Availability
& Replication:

Replication 
Performance,
and why it matters

21 September 2021



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.2 

Evolution of Replication

• Trigger-based Replication Slony, Londiste 2004

• Physical File-based Replication PG8.2 2006

• Physical Streaming Replication PG9.0 2010

• Logical Streaming Replication PG10 2017



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.3 

Why?

• Why does it matter how fast replication is?

• Why does it matter how fast persistence is?

• Robustness and High Availability features are slow



synchronous_
commit



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.5 

synchronous_commit = on

• Means all WAL will be fsynced to disk before COMMIT

• Ensures that any COMMIT is Durable



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.6 

synchronous_commit = off

• Means report COMMIT to user before changes have gone to disk

• For short transactions, can be ~10x faster, with slower disk technology

• COMMITs may be lost if the server crashes



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.7 

synchronous_commit = remote_apply

• Means wait for COMMIT to be applied to remote server(s)

(Assuming synchronous_standby_names is set)

Synchronous Replication
• Can be much slower as we wait for round trip and apply

• Most sessions spend a long time waiting for reply, so causes a drop in 

throughput as well as loss of latency

• Use more sessions when your applications require Sync Replication

• Restricts from transactions on the origin node from going too fast for the 

standby nodes



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.8 

synchronous_commit = remote_write

• Means wait for WAL for COMMIT to be written to remote server(s)

Synchronous Replication, with a performance boost

• Slightly faster than remote_apply, since need not wait for apply

• Also gives more consistent replication lag since effects that slow down 

apply do not affect the response to origin client

• However, still affected by origin tasks generating too much WAL, such as 

CREATE INDEX, ALTER TABLE, VACUUM, VACUUM FULL, CLUSTER etc..



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.9 

synchronous_commit = local

• Means don't wait for WAL for COMMIT to be sent to remote server(s)

Asynchronous Replication

• Faster on local node, but can allow the origin node to process transactions 

faster than they can be applied, causing a backlog to develop

• Typical cause of replication lag



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.10 

Example

• Server capable of 100k TPS

• Replication capable of 25k TPS

• Application exceeds 25k TPS then backlog begins to develop

• If App runs at 75k TPS for 1 hours, then a backlog of 50k xacts will 

develop, which would take 2 hours to clear on a quiet server, longer in 

other cases

• At failover, much data could be lost if this is not managed

• Replication performance is very important for your data!



Replication 
Architectures 
& Performance



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.12 

Origin (Upstream)

walsender

PostgreSQL Trigger-based Replication

Target (Downstream)

WALDatabase

user 
backend

user 
backend

user 
backend

apply

WAL Database

shared_
buffers

shared_
buffers

walsendersender

batches



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.13 

Origin (Upstream)

walsender

PostgreSQL Physical Streaming Replication [PG9]

Target (Downstream)

WALDatabase

user 
backend walreceiveruser 
backend

user 
backend

apply 
(startup)

WAL Database

shared_
buffers

shared_
buffers

walsenderwalsender



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.14 

Origin (Upstream)

walsender

PostgreSQL Logical Streaming Replication [PG10]

Target (Downstream)

WALDatabase

user 
backend

user 
backend

user 
backend

apply

WAL Database

shared_
buffers

shared_
buffers

walsenderwalsender



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.15 

Replication Architecture Comparisons

• WAL Overhead on Origin

• Network bandwidth used

• Number/architecture of Processes performing work

• Type of Apply (direct block/row search)



VLDB Issues



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.17 

Physical: Row Hints and Index Queries

• Row hints are not passed across as WAL records in all cases

• Indexes cannot trust that the item killed hint has been replicated, so index 

searches are less than optimal in a table with UPDATEs

• Can be a noticeable performance issue



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.18 

Cache and I/O Effects

• To maintain good performance for replication, working set of database 

must remain in cache

• Any cache shortfall will become I/O

• Architecture should allow I/O avoidance
• Physical via Full Page Writes

• Logical via Parallel Apply

• => Cache on replicas should match cache on origin



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.19 

Type of Apply

• Physical
• Direct block access

• Prefetch coming in PG15?

• Logical
• Rows searched using Primary Keys

• Index entries also need to be re-applied

• Btree access is O(logN), while Hash indexes can be O(k)

• Hash indexes become more important for Logical Replication



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.20 

Basebackup & Catchup

• Basebackup needed as first stage of replication setup

• Catchup starts when base backup ends

• P = processing rate of Origin node

• R = processing rate of Replication

• T = time to take Basebackup

• Catchup time = T * P

R - P



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.21 

Major Release Upgrades without downtime

• Only possible with Logical Replication since significantly fewer 

dependencies to specific release formats and behavior

• Can VLDBs that rely on Physical Replication be upgraded sensibly?



Conclusions



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.23 

Maturity

• Trigger-based Replication Slony, Londiste 2004

• Physical File-based Replication PG8.2 2006

• Physical Streaming Replication PG9.0 2010

• Logical Streaming Replication PG10 2017

• BDR3.6 2019

• BDR3.7 2021



© Copyright EnterpriseDB Corporation, 2021. All rights reserved.24 



Thanks!

Simon.Riggs@enterprisedb.com


