
Security Best Practices
for Postgres
2023 Update

Dave Page
VP and Chief Architect, Database
Infrastructure, EDB

Jeremy Wilson
CTO, NA Public Sector, EDB

®

www.enterprisedb.com

01 Executive Summary

02 Introduction

03 Postgres Security Features – AAA Framework
3.1 Authentications

3.1.1 Password Profiles

3.2 Authorization

3.2.1. Database Object Access

3.2.2. View Access

3.2.3. Row Level Security

3.2.4. Data Redaction

3.3 Auditing

04 Data Encryption
4.1 Transparent Data Encryption

4.2 Full Disk Encryption

4.3 File System Encryption

05 Conclusion

06 Additional Reading

TABLE OF CONTENTS

2

Executive Summary

This document presents a framework and a series of recommendations to secure and protect a Postgres database.
We discuss a layered security model that addresses physical security, network security, host access control, database
access management and data encryption. While all of these aspects are equally important, the document focuses on
Postgres-specific aspects of securing the database and the data. For our discussion of the specific security aspects
relating to the database and the data managed in the database, we use an AAA (Authentication, Authorization and
Auditing) approach common to computer and network security.

Most of the recommendations in this document are applicable to PostgreSQL (the Community edition) and to
EDB Postgres™ Advanced Server (EPAS), the enterprise-class, feature-rich commercial distribution of Postgres
from EnterpriseDB® (EDB™). EPAS provides additional relevant security enhancements such as Transparent Data
Encryption, password profiles, auditing, data redaction and server-based SQL injection protection that are not
available in the same form in PostgreSQL.

EDB also provides our Standard Plan, which offers open source Postgres with enterprise-grade

tools for high availability, migration, monitoring and backup and recovery. This solution helps

businesses strengthen and extend PostgreSQL with enhanced security, resiliency, reliability

and optimization. For those looking to protect their data on business-critical applications via

transparent dataencryption, the EDB Standard Plan is ideal.

3

Introduction

We can think of security in steps and advise a strategy of granting the least access necessary for any job or role,
blocking unnecessary access at the earliest opportunity.

In this document, we will discuss the last three items: limiting access to the database, limiting access to the data and
securing the data. While physical, network and host system security are extremely important to the security of your
data, they are beyond the scope of this document.

Secure physical access to the host

Limit access to your corporate network
in general

Limit access to the database host

Secure physical access to the host

Limit access to the data contained within
the database

Secure the data stored within the database

4

General Recommendations

•	 Keep your operating system and your database
patched. EDB’s support subscriptions provide
timely notifications of security updates and
appropriate patches for Postgres. There are a
variety of tools available for monitoring operating
system upgrades that can integrate with package
management systems such as yum/dnf or apt.

•	 Don’t put a postmaster port on the internet,
unless it is truly vital to your business. Firewall this
port appropriately; if that’s not possible, make
a readonly standby database available on the
port, instead of a read-write master. Network port
forwarding with auditing of all connections is a
valid alternative.

•	 Isolate database ports from other traffic through
subnetting or other techniques.

•	 Grant users the minimum access they require
to do their work; reserve the use of superuser
accounts for tasks or roles where it is absolutely
required.

•	 Restrict access to configuration files (postgresql.
conf and pg_hba.conf) and log files (pg_log) to
administrators.

•	 Disallow host system login by the database

superuser roles (postgres for community
Postgres, enterprisedb on EDB Postgres
Advanced Server). Enable superuser access only
as required, in exceptional circumstances.

•	 Provide users with their own login; shared
credentials are not a recommended practice
and they make auditing more complicated.
Alternatively, use the edb_audit_tag capability
(available in EDB Postgres Advanced Server only)
to add more audit information to sessions resulting
from application-level connections.

•	 Do not rely solely on your front-end application to
prevent unauthorized access to your database;
integrate database security with enterprise-level
authentication and authorization models, such as
LDAP/AD or Kerberos.

•	 Keep backups and have a tested recovery plan.
No matter how well you secure your system, it is
still possible for an intruder to access, delete and
modify your data. Ensure your backups are kept
securely to prevent unauthorized access.

It may be helpful to think of security in terms of the AAA model developed for network and computer security.

AAA stands for Authentication, Authorization and Auditing.

•	 Authentication: Verify that the user is who they claim to be.

•	 Authorization: Verify that the user is allowed access.

•	 Auditing (or Accounting): Record all database activity, including the user name and the time in the log files.

Not all security features such as Data Encryption (Section 3.5) fit exactly into these categories, but the AAA model
offers a useful framework for this discussion.

5

Overcoming PostgreSQL HA limitations
with EDB Postgres Distributed

POSTGRES SECURITY FEATURES – AAA FRAMEWORK

3.1 Authentications

3.1.1 Password Profiles

Password profiles can be used to:

The Postgres host-based access file (pg_hba.conf)
restricts access based on user name, database
and source IP (if the user is connecting via TCP/IP).
Authentication methods are assigned in this file as
well. The authentication method and/or methods you
choose depend on your use case.

GSSAPI—Postgres supports GSSAPI with Kerberos
authentication according to RFC 1964. GSSAPI
provides automatic authentication (single sign-on)
for systems that support it. The authentication itself is
secure, but data sent over the database connection is
unencrypted unless GSS or SSL encryption is in use.

SSPI—Use this option if you are on a Windowsbased
system and would like to implement Single Sign-On
(SSO) authentication.

LDAP/RADIUS—LDAP and RADIUS are useful in
situations where you have large numbers of users and
need to manage passwords from a central location.
This centralization has the advantage of keeping your
pg_hba.conf file small and more manageable and gives
your users a “unified password experience” across
your infrastructure. Both LDAP and RADIUS require
solid infrastructure, as you are relying on the service and
connectivity to that service to access your database.

LDAP should only be used if Kerberos (which includes
both SSPI and GSSAPI) is out of the question. LDAP is
less secure because passwords are forwarded to the
LDAP server, and it can easily be set up in an insecure
way. RADIUS should not be used because it has weak
encryption, using md5 hashing for credentials.

Since Postgres version 9.5, EPAS supports Oracle-compatible password profiles when using MD5 or SCRAM
authentication. A password profile is a named set of password attributes that allow a DBA to easily manage a group
of roles that share comparable authentication requirements. Each profile can be associated with one or more users.
When a user connects to the server, the server enforces the profile that is associated with the login role.

See EDB’s Database Compatibility for Oracle® Developer’s Guide Section 2.3 “Profile Management” for more
information, available here.

•	 Specify the number of allowable
failed login attempts.

•	 Lock an account due to excessive
failed login attempts.

•	 Mark a password for expiration.

CERT—TLS certificate authentication (sometimes
referred to as SSL) can be used for encryption of the
traffic on the wire and for authentication. Certificates are
often used in machine-to-machine communication.

MD5—md5 stores username and password
information in the database, which may be a suitable
alternative if you have a very small number of users.

SCRAM is highly preferred over md5 as the passwords
are securely hashed. SCRAM—If you have a very small
number of trusted users, you may want to use scram-
sha-256 authentication. SCRAM is highly preferred over
md5 as the passwords are securely hashed.

REJECT—Use this method to reject specific users,
connections to specific databases and/or specific
source IPs.

TRUST—Trust authentication should only be used
in exceptional circumstances, if at all, as it allows a
matching client to connect to the server with no further
authentication.

It’s imperative that you have a full understanding of the
ramifications of each authentication method. See the
Postgres documentation for a more detailed study of
these and other authentication methods.

As mentioned in the Introduction, access to the pg_ hba.
conf file should be restricted to administrators. Try to
keep this file properly pruned; larger, more complicated
files are harder to maintain and more likely to contain
incorrect or outdated entries. Review this file periodically
for unnecessary entries.

•	 Define a grace period after a password expiration.

•	 Define rules for password complexity.

•	 Define rules that limit password reuse.

https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/database-compatibility-for-oracle-developers-guide/12/Database_Compatibility_for_Oracle_Developers_Guide.1.030.html

6

3.2 Authorization

3.2.1 Database Object Access

3.2.2 View Access

3.2.4 Data Redaction

3.2.3 Row Level Security

Once the user has been properly authenticated, you must grant permission to view data and perform work in
the database. As previously advised, grant only those privileges required for a user to perform a job and disallow
shared (group) login credentials. Manage users and groups in Postgres via role assignments. A role may refer to an
individual user or a group of users. In Postgres, roles are created at the cluster (database server) level. This means
roles are applied to all databases defined for the cluster/database server; it is very important to limit role permissions
appropriately. Permissions can be applied to database objects (tables, views, functions, etc), to rows inside of tables
and to redaction policies.

When authentication information (e.g., usernames and passwords) are stored in a table, the use of statement logging
can expose that information, even if the table is nominally secure. Similarly, if sensitive information is used in queries (for
example any kind of personally identifiable information as a key); those parameters can be exposed by
statement logging.

Assigned privileges and caveats are outlined in the Postgres documentation:

•	 Revoke CREATE privileges from all users and grant them back to trusted users only.

•	 Do not allow functions or triggers written in untrusted procedural languages.

•	 SECURITY DEFINER functions allow users to run tasks at an elevated privilege level in a controlled way, but
a carelessly written function can inadvertently reduce security. Review the documentation (section Writing
Security Definer Functions Safely of CREATE FUNCTION) for more details.

•	 Database objects should be owned by a secure role, ideally one with very restricted access to the database (e.g.
from a Unix Domain Socket only) and not by a role that an application user can connect with. This minimizes the
chance that an attacker can modify or drop objects. While this is preferred from a security perspective, it may be
problematic with application frameworks that manage the schema themselves - this should be implemented
with caution.

•	 Be aware that when log_statement is set to ‘ddl’ or higher, changing a role’s password via the ALTER ROLE
command will result in password exposure in the logs, except in EDB Postgres Advanced Server 11 and higher,
where the edb_filter_log.redact_password_command instructs the server to redact stored passwords from the
log file. See more information here.

Access to views can be controlled as
described above (they are database
objects), and views can in turn be used to limit
the visibility of data to certain groups of users
by creating a VIEW of a table and limiting
permissions for that VIEW. Postgres versions
9.2 and higher provide the option to CREATE
VIEW WITH (security_barrier). If extra
precaution is necessary to avoid possible
security issues, see more information here.

Data redaction - the ability to hide some data elements or selectively obfuscate data for certain groups of users is
another technique to manage access to data. EDB Postgres Advanced Server introduced data redaction in version 11.

Data redaction is a policy-based tool that works with Postgres roles to grant or revoke read access to certain data
elements. For example, one group of users sees social security numbers as XXX-XX-1235, whereas data admin role
members see the full detail. See more information here.

Using DBMS_REDACT Constants and Function Parameters

Row Level Security (RLS) has been available since Postgres
version 9.5. RLS allows fine-grained access to table rows
based on the current user role. This includes SELECT,
UPDATE, DELETE and INSERT operations. See more
information here.

EDB Postgres Advanced Server includes an Oracle-
compatible implementation of this mechanism in its
DBMS_RLS package, which provides for Oracle-compatible
implementations of ADD_POLICY, DROP_POLICY and
UPDATE_POLICY. See more information here.

Constant Type Value Description

NONE INTEGER 0 No redaction, zero effect on the result of a query against table.

FULL INTEGER 1 Full redaction, redacts full values of the column data.

PARTIAL INTEGER 2 Partial redaction, redacts a portion of the column data.

RANDOM INTEGER 4
Random redaction, each query results in a different random
value depending on the datatype of the column..

REGEXP INTEGER 5
Regular Expression based redaction, searches for the
pattern of data to redact.

CUSTOM INTEGER 99 Custom redaction type.

https://www.postgresql.org/docs/current/static/sql-createfunction.html
https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/installation-getting-started/release-notes/11/EPAS_Release_Notes.1.4.html
http://rhaas.blogspot.com/2012/03/security-barrier-views.html
https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/database-compatibility-for-oracle-developers-built-in-package-guide/12/Database_Compatibility_for_Oracle_Developers_Built-in_Package_Guide.1.28.html
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/database-compatibility-for-oracle-developers-built-in-package-guide/12/Database_Compatibility_for_Oracle_Developers_Built-in_Package_Guide.1.31.html

7

3.3 Auditing

Highly detailed levels of scrutiny can result in a lot of log messages; log only at the level you need. With Postgres, you
can adjust logging levels on a per-user and per-database basis. Review your audit logs frequently for anomalous
behavior. Establish a chain of custody for your logs.

Keep in mind that a high logging level, combined with the storage of passwords in the database, can result in
passwords being displayed in the logs. EDB Postgres Advanced Server has introduced the edb_filter_log. redact_
password_commands extension in version 11 to instruct the server to redact stored passwords from the audit log file.

For more information about EPAS’ audit log capability, click here.

EPAS provides the capability to produce audit reports. Database auditing allows database administrators, auditors
and operators to track and analyze database activities in support of complex auditing requirements. These audited
activities include database access and usage along with data creation, change, or deletion. The auditing system is
based on configuration parameters defined in the configuration file.

We recommend that you audit, (listed by increasing the level of scrutiny):

•	 User connections

•	 DDL changes

•	 Data changes

•	 Data views

https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/user-guide/12/EDB_Postgres_Advanced_Server_Guide.1.43.html

8

Data Encryption

Postgres offers various encryption options at several different levels and provides flexibility in protecting data from
disclosure due to database server theft, unscrupulous administrators and insecure networks. Some of these
encryption options include:

•	 Transparent Data Encryption

•	 Full Disk Encryption

•	 File System Encryption

•	 Column Level Encryption

•	 Password Storage Encryption

•	 Data Partition Encryption

•	 Network-based Password Encryption

•	 Network-based Data Encryption

•	 Client-side Encryption

Some of these encryption options are highlighted below.

4.1 Transparent Data Encryption (TDE)

What is encrypted with TDE?

How does TDE work?

One of the building blocks of database encryption is TDE. TDE offers encryption at the file level which solves the
problem of protecting data at rest, encrypting databases both on the hard drive and consequently on backup media.
Enterprises typically employ TDE to solve compliance issues such as PCI DSS which require the protection of data at
rest. TDE is an optional feature supported by version 15 of EDB Postgres Advanced Server, EDB Postgres Extended
Server with high availability and the EDB Standard Plan.

In addition, TDE also helps protect private and confidential information by encrypting it so that it cannot be read by
anyone without the authority to see it. It uses key management to control who has access to what data. Keys are
essentially decoder rings, which allow for encrypted data to be unlocked with a unique key.

Community Postgres does not have TDE, making it a difficult choice for regulated industries and governmental
agencies that require PCI compliance. The introduction of TDE to Postgres makes it a much more viable option for
these types of customers.

TDE encrypts the following:

Files underlying tables, sequences and indexes, including TOAST tables and system catalogs—including all forks.
These files are known as data files.

Write-ahead log (WAL) files

Temporary files for query processing and database system operation

The following items are not encrypted:

Metadata internal to operating the database system that doesn’t contain user data, such as the transaction status (for
example, pg_subtrans and pg_xact).

The file names and file system structure are in the data directory. That means that the overall size of the database
system, the number of databases, the number of tables, their relative sizes, as well as file system metadata such as last
access time are all visible without decryption.

Data in foreign tables, server diagnostic logs, configuration files, etc.

TDE prevents unauthorized viewing of data in operating system files on the database server and on backup storage.
Data becomes unintelligible for unauthorized users if it’s stolen or misplaced.

Data encryption and decryption are managed by the database and do not require application changes or updated
client drivers.

EDB Postgres Advanced Server and EDB Postgres Extended Server provide hooks to key management that’s
external to the database. These hooks allow for simple passphrase encrypt/decrypt or integration with enterprise key
management solutions.

For more information on Securing the data encryption key, click here.

https://www.enterprisedb.com/products/edb-standard
https://www.enterprisedb.com/docs/tde/latest/key_stores/

9

4.2 Full Disk Encryption

4.3 File System Encryption

Full disk or partition encryption is one of the best ways of protecting your data. This method not only protects each file,
however, also protects the temporary storage that may contain parts of these files. Full disk encryption protects all files
so you do not have to worry about selecting what you want to protect and possibly missing a file.

There are different encryption options available bundled with most operating systems, commercially and as open-
source products. Among the most common options are FileVault, which is included with Apple macOS, BitLocker for
use with Microsoft Windows and Linux Unified Key Setup LUKS on Linux systems.

Encrypted volumes are also available on all the major cloud providers for protecting your data. For example, Amazon’s
Elastic Block Service (EBS) provides an option for creating encrypted volumes, which can use a default key or one
provided through their key management system. It’s worth noting that Amazon does of course have access to both
your keys and the physical devices on which the volumes are provisioned, but they go to lengths to ensure that there is
a separation of duties between the staff that may have access to the keys and staff that may have access to
the hardware.

File system encryption, often called file/directory encryption, is where individual files or directories are encrypted by the
file system itself. There is stackable cryptographic file system encryption available which users can utilize
in their environment.

File system encryption gives the following advantages:

1.	 Flexible file-based key management, so that each file can be and usually is encrypted with a separate
encryption key.

2.	 Individual management of encrypted files e.g. Incremental backups of the individual changed files even in
encrypted form, rather than backup of the entire encrypted volume.

3.	 Access control can be enforced through the use of public-key cryptography, and the fact that cryptographic
keys are only held in memory while the file that is decrypted by them is held open.

When using file system encryption, we typically encrypt the volumes that are used to store the database and write-
ahead log, or often the entire system. These types of encryption are transparent to the database server and require no
configuration in Postgres.

It is important to note that file system or full disk encryption in Postgres provides protection against different attack
vectors. The operating system may make use of a password or key management system very early on in the boot
phase to ensure that keys are kept externally, but once a server with file system encryption is booted and running with
filesystems mounted, all the data is accessible in the same way as it would be on a machine without encryption. This
gives us protection against physical attacks on non-running hardware; for example, a stolen hard disk. File system or
full disk encryption does not protect against attacks on a system that is up and running, nor do they enable us to control
the visibility of data in the database for different users.

https://support.apple.com/en-gb/guide/mac-help/mh11785/mac
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-how-to-deploy-on-windows-server
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/chap-Security_Guide-Encryption.html#sect-Security_Guide-LUKS_Disk_Encryption

N/A

Conclusion

Techniques for securing and minimizing access to sensitive data in Postgres require careful planning and design, but
can significantly improve the overall security of your data. Postgres offers a rich set of tools to secure the database and
control access to the data. The AAA (Authentication, Authorization, and Auditing) framework provides a common
method on how to leverage and most effectively utilize system tools. EDB Postgres Advanced Server adds additional
capabilities in terms of Password Profiles, Data Redaction, and SQL Server Injection Protection.

We’ve also covered how determining user authentication mechanisms to authenticate different connection attempts
is critical to securing your Postgres deployment. Roles are an important part of security in Postgres, and by configuring
and securing them properly, we can use them to minimize the risk to your database servers using the principle
of least privilege.

Lastly, we explored how encryption plays a big role in the overall security posture of your Postgres deployments
and encompasses several different levels of encryption options, such as Transparent Data Encryption, File System
Encryption and Full Disk Encryption, to name a few—and the benefits they bring. Hopefully, this overview is helpful for
reviewing the overall security of your deployments. But, do remember that each deployment scenario is unique and the
suggestions made here are not a “one size fits all” solution.

Just solve it with Postgres.

8

Additional Reading

•	 Blog: Managing Roles with Password Profiles: Part 1

•	 Blog: Managing Roles with Password Profiles: Part 2

•	 Blog: Managing Roles with Password Profiles: Part 3

https://www.enterprisedb.com/blog/managing-roles-password-profiles-part-1
https://www.enterprisedb.com/blog/managing-roles-password-profiles-part-2
https://www.enterprisedb.com/blog/managing-roles-password-profiles-part-3

8

About EDB

EDB provides a data and AI platform that enables organizations to harness the full power of Postgres for transactional,
analytical, and AI workloads across any cloud, anywhere. EDB empowers enterprises to control risk, manage costs
and scale efficiently for a data and AI led world. Serving more than 1,500 customers globally and as the leading
contributor to the vibrant and fast-growing PostgreSQL community, EDB supports major government organizations,
financial services, media and information technology companies globally. EDB’s data-driven solutions enable
customers to modernize legacy systems and break data silos while leveraging enterprise grade open source
technologies. EDB delivers the confidence of up to 99.999% high availability with mission critical capabilities built in
such as security, compliance controls, observability and multi-layer encryption.

For more information, visit www.enterprisedb.com.

http://www.enterprisedb.com

Security Best Practices
for Postgres

®

www.enterprisedb.com

2023 Update

© Copyright EnterpriseDB Corporation 2023
Updated on May 5, 2023

EnterpriseDB Corporation
34 Crosby Drive
Suite 201
Bedford, MA 01730

EnterpriseDB and Postgres Enterprise Manager are registered
trademarksof EnterpriseDB Corporation. EDB, EnterpriseDB, EDB
Postgres, Postgres Enterprise Manager, and Power to Postgres
are trademarks of EnterpriseDB Corporation. Oracle is a registered
trademark of Oracle, Inc. Other trademarks may be trademarks
of their respective owners. Postgres and the Slonik Logo are
trademarks or registered trademarks of the Postgres Community
Association of Canada, and used with their permission.

