
WHY THE MOST
PRODUCTIVE & SECURE
TEAMS USE EDB’S
ORACLE COMPATIBLE
POSTGRES

July 11th, 2023

Introductions

2

Adam Wright
Sr Product
Manager, EDB

Vibhor Kumar
VP Performance
Engineering &
Architecture
Team, EDB

Setting the
Stage

33

Postgres distributions by EDB Subscriptions

PostgreSQL

Transparent Data
Encryption

Advanced Replication

Advanced Security

Advanced SQL

PostgreSQL PostgreSQL

Transparent Data
Encryption

Advanced Replication

Oracle Compatibility

Community 360 Standard Enterprise

EDB Postgres
Advanced:
Redwood and
Postgres Mode

EDB Postgres
Advanced:
Redwood Mode

10 of our
Favorite
Features

55

Autonomous
Transaction

66

Autonomous Transaction

A calling program start another fully independent transaction
with its own commit scope:

○ The child transaction runs independently of the parent transaction

○ The child transaction can commit and the parent transaction resumes

○ The parent transaction can continue without affecting the child
transaction

7

Autonomous Transaction

○ Autonomous transactions offer developers fine-grained control over
transaction boundaries.

○ They enable developers to handle specific operations independently
without affecting the main transaction.

○ Let's explore why autonomous transactions are valuable and
examine some examples.

8

Why Autonomous Transaction?

○ Granular Control: Developers can manage individual operations
within a larger transaction independently.

○ Error Isolation: Autonomous transactions allow errors to be
handled without impacting the main transaction, ensuring data
integrity.

○ Concurrent Processing: Multiple autonomous transactions can
execute concurrently, improving performance and scalability.

9

Use Cases &
Benefits

1010

Use Cases and Benefits - Funds Transfer

○ Scenario
■ A user initiates a funds transfer from their bank account to another account.

■ The system needs to update the sender's account balance and record the
transaction.

○ Solution
■ Use autonomous transactions to ensure the atomicity of the funds transfer

operation.

■ Within the larger transaction, the transfer process can be encapsulated as an
autonomous transaction.

■ If any issues arise during the transfer, the autonomous transaction can be rolled
back independently, leaving the outer transaction intact.

11

Use Cases and Benefits - Audit Logging

○ Scenario
■ An application requires detailed audit logs for critical operations such as user

authentication or financial transactions.

○ Solution
■ Implement autonomous transactions to handle audit logging separately.

■ Each logging operation can be encapsulated as an autonomous transaction,
ensuring that the logs are stored consistently even if the main transaction
encounters errors or is rolled back.

12

Data
Redaction

1313

Data Redaction

• Selective, on-the-fly obfuscating, hiding or remove of sensitive data in query
results

• Used in the protection of personally identifiable information (PII) and sensitive,
confidential or classified data

14

Why Data Redaction?

• Protects sensitive data from being exposed and used for malicious
or nefarious purposes

• Useful for compliance to GDPR, PCI and HIPAA standards

• Oracle compatible feature built-in to EDB Postgres Advanced
Server :
○ DBMS_REDACT Package implementation

• Consistent across applications with minimal application changes

• Requires manual design and construction in PostgreSQL by
developer

15

Use Cases &
Benefits

1616

Use Cases and Benefits - Data Redaction

○ Scenario
■ A bank call center needs to verify a caller's identification and already has one

piece of information, the customers phone number, and now needs to verify a
second piece of information, the last 4 of their Social Security Number (SSN),
without allowing the customer service rep to see the entire SSN.

○ Solution
■ Create a redaction function that replaces the first characters with ‘xxx-xx’

■ Create a data redaction policy on the ‘customers’ table to redact the SSN column

17

Hierarchical
Queries

1818

Hierarchical Queries

19

• Hierarchical queries enable developers to retrieve and analyze data
that is organized in a hierarchical or parent-child structure.

• These queries are particularly useful when dealing with organizational
structures, project hierarchies, file systems, and other data models that
have inherent hierarchical relationships.

Hierarchical Queries

20

CONNECT BY

Forms the basis of the order which rows are returned in the result set

START WITH

Determines the rows select by the table_expression to use as the root nodes
NODE LEVEL

 LEVEL is a pseudo-column that you can use wherever a column can appear in the SELECT command

ORDER SIBLINGS BY

Special case of the ORDER BY clause to order the result set so the siblings appear in ascending or
descending order

CONNECT_BY_ROOT

Unary operator that you can use to qualify a column to return the column’s value of the row considered to
be the root node in relation to the current row.

SYS_CONNECT_BY_PATH

SYS_CONNECT_BY_PATH is a function that works in a hierarchical query to retrieve the column values of
a specified column that occur between the current node and the root node

Hierarchical Query Example

21

-- Retrieve a path with SYS_CONNECT_BY_PATH
SELECT
 level, ename , SYS_CONNECT_BY_PATH(ename, '/') managers
FROM emp
 CONNECT BY PRIOR empno = mgr
 START WITH mgr IS NULL
 ORDER BY level, ename, managers;

level | ename | managers
-------+--------+-------------------------
 1 | KING | /KING
 2 | BLAKE | /KING/BLAKE
 2 | CLARK | /KING/CLARK
 2 | JONES | /KING/JONES
 3 | ALLEN | /KING/BLAKE/ALLEN
 3 | FORD | /KING/JONES/FORD
 3 | JAMES | /KING/BLAKE/JAMES
 3 | MARTIN | /KING/BLAKE/MARTIN
 3 | MILLER | /KING/CLARK/MILLER
 3 | SCOTT | /KING/JONES/SCOTT
 3 | TURNER | /KING/BLAKE/TURNER
 3 | WARD | /KING/BLAKE/WARD
 4 | ADAMS | /KING/JONES/SCOTT/ADAMS
 4 | SMITH | /KING/JONES/FORD/SMITH

Use Cases
&

Benefits

2222

Hierarchical Queries - Key Advantages

23

• Simplicity
○ Hierarchical queries simplify the process of retrieving and manipulating hierarchical data.

○ Developers can use built-in SQL syntax and functions (such as CONNECT BY and START WITH)
to express the hierarchical relationships, eliminating the need for complex procedural logic.

• Performance
○ Hierarchical queries are optimized in database systems to efficiently retrieve hierarchical data,

resulting in faster and more scalable operations.

○ The underlying indexing and caching mechanisms help process large hierarchical structures
with ease.

• Flexibility
○ Hierarchical queries offer flexibility by allowing developers to filter, sort, and aggregate

hierarchical data based on their requirements.

○ They can customize the query output to match specific business needs and perform
calculations or aggregations at different levels of the hierarchy.

Virtual Private
Database

2424

Virtual Private Database (RLS)

• Fine grained access control limits user views of data records in one
table

• Oracle compatible
○ DBMS_RLS Package implementation

• A single policy can be defined in a single function and then applied to multiple
tables reducing work, errors and maintenance.

• Policies may be temporarily disabled without deleting them.
• Policies may be applied to any combination of INSERT, UPDATE, DELETE and

SELECT. E.g. Apply to INSERT, UPDATE, and DELETE commands, but not
SELECT commands.

• Multiple policies on a table are ANDed together.
○ A given row must satisfy all policies

25

Why Virtual Private Database (RLS)?

• Build applications that need to account for operating in:
○ Multi-tenant environments
○ Hosting environments

• Security sensitive data
• Private data

26

Use Cases &
Benefits

2727

Use Cases and Benefits - Virtual Private Database
(RLS)

○ Scenario

■ A Financial Investment company must protect their wealth
management client's private information from being abused but make
it available to their money manager.

○ Solution

■ Apply a policy to the clients table that so that money managers can
only see the records of their clients.

28

Optimizer
Hints

2929

Optimizer Hints

30

• Optimizer hints are directives provided to the database query optimizer
to influence its execution plan decisions.

• Developers use hints to guide the optimizer and optimize query
performance based on their knowledge of the data and query
requirements.

• While the optimizer generally makes intelligent decisions, hints can be
useful in specific scenarios to improve query performance.

Optimizer Hints

• Access Method Hints

• Specify a JOIN order

• Joining Relation Hints

• Global hints

• APPEND optimizer hint

• Parallelism hints

• Conflicting hints

31

Use Cases
&

Examples

3232

Optimizer Hints - Use Cases & Examples

33

○ Scenario - Join Order Optimization
■ A query involves joining multiple tables, and the optimizer chooses a suboptimal

join order, resulting in poor performance.

○ Solution
■ Use a hint to explicitly specify the desired join order.

■ SQL Code

SELECT /*+ ORDERED */ *
FROM table1 JOIN table2 ON table1.id = table2.id
JOIN table3 ONtable2.id = table3.id;

■ The /*+ ORDERED */ hint instructs the optimizer to follow the specified join order,
potentially improving query performance.

Optimizer Hints - Use Cases & Examples

34

○ Scenario - Index Selection
■ The optimizer selects a suboptimal index for a query, leading to slower execution.

○ Solution
■ Use a hint to specify the desired index to be used.

■ SQL Code

SELECT /*+ INDEX(table1 index_name) */ *
FROM table1
WHERE column1 = 'value';

The /*+ INDEX(table1 index_name) */ hint directs the optimizer to use the specified
index on table1, potentially improving query performance.

Advanced
Partitioning

3535

Use Cases and Benefits - Advanced Partitioning

EPAS extends PostgreSQL partitioning with cool partitioning features to
make DBA and Developers lives easier:

• Oracle like syntax for partitioning
• Partition Types (Beyond PostgreSQL) -

○ AUTOMATIC Partition (LIST)
○ INTERVAL Partition (RANGE)

• ALTER TABLE…SPLIT PARTITION
• ALTER TABLE…EXCHANGE PARTITION
• ALTER TABLE…MOVE PARTITION

36

Why Advanced Partitioning?

• Easier to manage the partitioning scheme
• AUTOMATIC and Interval - Don’t need to worry about partition

creation at runtime
○ Create a new partition automatically, if given tuple doesn’t fit to

the existing partitions.

37

Use Cases &
Benefits

3838

Advanced Partitioning

39

○ Scenario

■ A game operator designed a multiplayer game for 10TB but
experience high growth and needs to host 50TB on a single table to
avoid major application changes and maintain performance.

○ Solution

■ Use a Interval partition for the parent since data is first queried by
date and then a Hash subpartition to break tenants further into more
tables.

DBMS_PROFILER

4040

DBMS_PROFILER

41

• DBMS_PROFILER is a built-in EPAS (redwood mode) package that
allows developers to analyze the performance of EDB-SPL or
PL/pgSQL code.

• It helps identify bottlenecks, optimize code, and improve overall
application performance.

Use Cases
&

Examples

4242

DBMS_PROFILER - Use Cases & Examples

43

○ Scenario - Identifying Performance Hotspots
■ A complex PL/pgSQL procedure takes longer than expected to execute.

■ Developers need to identify the specific areas of the code causing the
performance issue.

○ Solution
■ Use DBMS_PROFILER to profile the procedure and collect performance

data.

■ Analyze the data to pinpoint the code sections with high resource
consumption or long execution times.

■ Optimize the identified sections to improve overall performance.

DBMS_PROFILER - Use Cases & Examples

44

○ Scenario - Code Coverage Analysis
■ A team wants to ensure that all parts of a PL/SQL package are being

executed during testing.

○ Solution
■ Utilize DBMS_PROFILER to perform code coverage analysis.

■ Enable profiling for the PL/SQL package and execute the test cases.

■ Review the profiler data to identify any sections of the code that are not
being executed, indicating potential gaps in test coverage.

DBMS_PROFILER - Use Cases & Examples

45

-- Enable profiling
EXEC DBMS_PROFILER.START_PROFILER(run_comment => 'Procedure profiling');

-- Execute the PL/SQL procedure to be profiled

-- Stop profiling
EXEC DBMS_PROFILER.STOP_PROFILER;

-- Generate and view the profiler report
SELECT *
FROM TABLE(DBMS_PROFILER.GET_REPORT());

DBMS_PROFILER - Sample Output

46

edb=# select runid, unit_number, line#, total_occur, total_time,
edb-# min_time, max_time
edb-# from plsql_profiler_data;
runid | unit_number | line# | total_occur | total_time | min_time | max_time

-------+-------------+-------+-------------+------------+----------+----------
2 | 19487 | 1 | 0 | 0 | 0 | 0
2 | 19487 | 2 | 0 | 0 | 0 | 0
2 | 19487 | 3 | 0 | 0 | 0 | 0
2 | 19487 | 4 | 1 | 1.3e-05 | 1.3e-05 | 1.3e-05
2 | 19487 | 5 | 1 | 2.2e-05 | 2.2e-05 | 2.2e-05
2 | 19487 | 6 | 1 | 0.000326 | 0.000326 | 0.000326
2 | 19487 | 7 | 109 | 0.000298 | 0 | 2.3e-05
2 | 19487 | 8 | 109 | 0.000202 | 0 | 9.4e-05
2 | 19487 | 9 | 108 | 0.001146 | 3e-06 | 6.6e-05
2 | 19487 | 10 | 0 | 0 | 0 | 0
2 | 19487 | 11 | 0 | 0 | 0 | 0
2 | 19487 | 12 | 1 | 2e-06 | 2e-06 | 2e-06
2 | 19487 | 13 | 0 | 0 | 0 | 0

(13 rows)

47

DBMS_CRYPTO

47

DBMS_CRYPTO

• Cryptographic functions and procedures for column level encryption of RAW,
BLOB, or CLOB data

○ Supports DECRYPT, ENCRYPT, HASH, MAC, RANDOMBYTES,
RANDOMINTEGER, RANDOMNUMBER

• Use DBMS_CRYPTO generate cryptographically strong random values

48

Why DBMS_CRYPTO?

• User friendly compared to alternative Postgres options

○ Most cookbooks from decades of Oracle implementations will
work with little or no code changes

• Protect sensitive columns

• Validate data integrity using industry-standard hashing algorithms

49

Example - DBMS_CRYPTO

50

CREATE TABLE passwords
(

principal VARCHAR2(90) PRIMARY KEY, -- username
ciphertext RAW(9) -- encrypted password

);

CREATE PROCEDURE set_password(username VARCHAR2, cleartext RAW) AS
typ INTEGER := DBMS_CRYPTO.DES_CBC_PKCS5;
key RAW(128) := 'my secret key';
iv RAW(100) := 'my initialization vector';
encrypted RAW(2048);
BEGIN

encrypted := dbms_crypto.encrypt(cleartext, typ, key, iv);
UPDATE passwords SET ciphertext = encrypted WHERE principal = username;

END;

51

EDB* Loader

51

EDB * Loader

52

● Efficient Data Loading and Transformation

● A command line utility loads data from an input source, typically a
file, into one or more tables using a subset of the parameters

53

Benefits
&

Features

53

EDB* Loader - Benefits & Features

54

○ High Performance
■ EDB * Loader offers high-speed loading capabilities, leveraging direct path loading

and parallel processing to maximize performance.

■ Developers can load massive datasets efficiently, reducing the time required for
data ingestion.

○ Flexible Data Transformation
■ EDB * Loader allows developers to define complex data transformations during the

loading process.

■ Examples include data format conversions, column mapping, data validation, and
data cleansing.

EDB* Loader - Benefits & Features

55

LOAD DATA
INFILE 'data.csv'
INTO TABLE employees
FIELDS TERMINATED BY ','
(employee_id, first_name, last_name, hire_date "YYYY-MM-DD")

Use Cases

5656

EDB* Loader - Use Cases

57

○ Data Migration
■ When migrating data from legacy systems or external sources, developers can use

EDB *Loader to efficiently load and transform the data into the desired EPAS
database structure.

○ Bulk Data Loading
■ Developers often employ SQL*Loader for fast loading of large volumes of data, such

as log files, CSV files, or data extracts, into Oracle databases.

○ ETL Processes
■ SQL*Loader plays a crucial role in ETL (Extract, Transform, Load) processes by

allowing developers to extract data from external sources, transform it as needed,
and load it into Oracle databases seamlessly.

EDB*Wrap

5858

EDB*Wrap

• EDB*Wrap utility obfuscates human readable source code

• Prevents any users from reading:
○ Functions,
○ Triggers,
○ Stored Procedures or
○ Packages

• Wrap Triggers, Stored Procedures and Functions

• Wrap entire Function Packages or just Package Body
○ Allows Developers to see Header prototypes

• Reverse engineering is possible, but would be very difficult.

59

“Hello Wor
zAQgtBw

Why EDB*Wrap?

• Useful for protecting intellectual property from unauthorized
viewing

• Protects sensitive algorithms or financial policies embedded in
database code

60

“Hello Wor
zAQgtBw

Use Cases and Benefits - EDB*Wrap

○ Scenario
■ Customer wanted to get away from database operations but had valuable

intellectual property embedded in Stored Procedures and was overly paranoid about
moving to a managed DBaaS.

○ Solution
■ Obfuscated edbspl by invoking EDB*Wrap, Running the resulting file, and then

calling the stored procedure just like any other procedure, which the source was not
visible to others.

61

“Hello Wor
zAQgtBw

CONCLUSION

6262

63

EDB Postgres Advanced Server 16
(Winter 2024)

● Privilege Analysis

● Support for package synonyms

● Improvements to Additional SUbprograms

○ DBMS_SESSION, DBMS_SQL, UTL_FILE

● Additional compatibility with Oracle MERGE syntax

THANKS FOR
JOINING US!

If your question did not get answered, please
submit it to: enterprisedb.com/contact

64

	WHY THE MOST PRODUCTIVE & SECURE TEAMS USE EDB’S ORACLE COMPATIBLE
POSTGRES
	Introductions
	Setting the Stage
	Postgres distributions by EDB Subscriptions
	10 of our Favorite Features
	Autonomous Transaction
	Autonomous Transaction
	Autonomous Transaction
	Why Autonomous Transaction?
	Use Cases & Benefits
	Use Cases and Benefits - Funds Transfer
	Use Cases and Benefits - Audit Logging
	Data Redaction
	Data Redaction
	Why Data Redaction?
	Use Cases & Benefits
	Use Cases and Benefits - Data Redaction
	Hierarchical Queries
	Hierarchical Queries
	Hierarchical Queries
	Hierarchical Query Example
	Use Cases
&
Benefits
	Hierarchical Queries - Key Advantages
	Virtual Private Database
	Virtual Private Database (RLS)
	Why Virtual Private Database (RLS)?
	Use Cases & Benefits
	Use Cases and Benefits - Virtual Private Database (RLS)

	Optimizer Hints
	Optimizer Hints
	Optimizer Hints
	Use Cases
&
Examples
	Optimizer Hints - Use Cases & Examples
	Optimizer Hints - Use Cases & Examples
	Advanced Partitioning
	Use Cases and Benefits - Advanced Partitioning
	Why Advanced Partitioning?
	Use Cases & Benefits
	Advanced Partitioning
	DBMS_PROFILER
	DBMS_PROFILER
	Use Cases
&
Examples
	DBMS_PROFILER - Use Cases & Examples
	DBMS_PROFILER - Use Cases & Examples
	DBMS_PROFILER - Use Cases & Examples
	DBMS_PROFILER - Sample Output
	DBMS_CRYPTO
	DBMS_CRYPTO
	Why DBMS_CRYPTO?
	Example - DBMS_CRYPTO
	EDB* Loader
	EDB * Loader
	Benefits
&
Features
	EDB* Loader - Benefits & Features
	EDB* Loader - Benefits & Features
	Use Cases
	EDB* Loader - Use Cases
	EDB*Wrap
	EDB*Wrap
	Why EDB*Wrap?
	Use Cases and Benefits - EDB*Wrap
	CONCLUSION
	EDB Postgres Advanced Server 16
(Winter 2024)
	THANKS FOR JOINING US!
If your question did not get answered, please submit it to: enterprisedb.com/contact

