Cloud Databases: The True Cost

Tom Rieger Senior Client Engineer December 14, 2022

OUICK POLL Is there a certain cloud you are most interested in?

Deep Apples-to-Apples Evaluation - DBaaS

- Amazon Web Services
 - RDS Postgres
 - Aurora Postgres Compatible
 - EDB Big Animal
- Azure
 - Flexible Server
 - EDB Big Animal

© EnterpriseDB Corporation 2022 - All Rights Reserved

What we will discuss today

YOU DO NOT WANT:

- The fastest at all cost
- The cheapest and slow
- YOU DO WANT:
 - the lowest cost per work element
 \$/transaction
 - linear scalability in \$/transaction
 - Concurrency
 - Workload
 - Database size

HOW WE DO THAT?:

- Take a scientific method approach of minimal variables :: maximum constants
- Industry-accepted workload
- Workload size consistency
- Component consistency
- BONUS: We will run a live
 - side-by-side race

How to measure?

The history of database benchmarking

- General workloads
 - Transactional
 - Analytical
- Vendor-specific workloads
 - Database-specific pgbench
 - Vendor-specific SAP SD
- More fit-for-purpose
 - Load testing
 - Performance testing
 - IO performance
- Historically benchmarks were focused on performance NOT economics

The effort EDB undertook

- Evaluate the optimal mix of CPU, RAM, storage and network AND comparable DBaaS
- Use a defensible, standards-based workload that clients can also utilize in their own environment
- Capture business and technical results
- Review the technical and economic result

HammerDB TPC®

EnterpriseDB Corporation 2022 - All Rights Reserved

\$

IT: No longer a 'tailored suit'

Up to now:

'Educated guesses' and 'release note analysis' to understand sizing and cost.

The cloud allows a more elastic 't-shirt' sizing

© EnterpriseDB Corporation 2022 - All Rights Reserved

Think of cloud provisioning as 't-shirt' sizes

© EnterpriseDB Corporation 2022 - All Rights Reserved

Workload constant - HammerDB

- HammerDB is open-source evolving, community and free
- Standards based
 - TPC-C for transactional
 - TPC-H for analytical
- Works with all major databases

 Oracle, SQLServer, DB2,
 MySQL, MariaDB, Postgres

Quick Anatomy of HammerDB

Hammer DB

- Order Processing Use-case
- Typical Transactional use case
 - Simple SQL
 - Large in volume
- Two primary 'knobs' to size the effort
 - Warehouses database size
 - User Concurrency
- Resulting measure: Transactions-per-minute (TPM)

Action Type	Mix
SELECT	75%
INSERT	8%
UPDATES	16%
DELETE	1%

Let's kick off the RACE

(1))

Sall

CONSTANT #1: Workload

To measure and compare, we need maximum 'constants' and minimal 'variables.

300 warehouses (60 GB) – 96 concurrent users – 5 min. warmup – 20 min. run

© EnterpriseDB Corporation 2022 - All Rights Reserved

Challenge #2 - What compute?

• Example:

E CPU

DB

Amazon gives you 55 choices in compute with 8 cores.

 From \$102 to \$825 per month

RAM

맞맞

						RAM/		Network Burst	EBS Burst					Burs
ategory	Cates 🔻	Size 💌	VM Price per more †	VCP T	RA	Rati T	Insta Stora	(Gbps)	Bandwid** (Mbps	M	Mod	Family 🛡	B Fr W	t Processor
eneral	A1	a1.2xlarge	\$102.78	8	16	2	EBS-Only	Up to 10	??	AWS		Graviton		AWS Graviton Processor with 64-bit Arm Neoverse cores
ompute	C6g	c6g.2xlarge	\$137.02	8	16	2	EBS-Only	Up to 10	Up to 4,750	AWS		Graviton2		AWS Graviton2 Processor with 64-bit Arm Neoverse cores
ompute	C7g	c7g.2xlarge	\$152.79	8	16	2	EBS-Only	Up to 15	Up to 10	AWS		Graviton3		AWS Graviton3 processors
eneral	M6g	m6g.2xlarge	\$154.47	8	32	4	EBS-Only	Up to 10	Up to 4,750	AWS		Graviton2		AWS Graviton2 Processor with 64-bit Arm Neoverse cores
ompute	C6g	c6gd.2xlarge	\$154.76	8	16	2	NVMe	Up to 10	Up to 4,750	AWS		Graviton2		AWS Graviton2 Processor with 64-bit Arm Neoverse cores
ompute	C5a	c5a.2xlarge	\$155.49	8	16	2	EBS-Only	Up to 10	Up to 3,170	AMD	7R32	EPYC		3.30 2nd generation AMD EPYC 7002 series processors (AMD EPYC 7R32) running at frequencies up to 3.3
ompute	C6a	c6a.2xlarge	\$162.54	8	16	2	EBS-Only	Up to 12.5	Up to 6.6	AMD	7R13	EPYC		3.60 Up to 3.6 GHz 3rd generation AMD EPYC processors (AMD EPYC 7R13)
eneral	T3	t3.2xlarge	\$166.81	8	32	4	EBS-Only	Up to 5		Intel	8175M	Skylake		3.10 Up to 3.1 GHz Intel Xeon Scalable processor (Skylake 8175M or Cascade Lake 8259CL)
mpute	C5	c5.2xlarge	\$171.55	8	16	2	EBS-Only	Up to 10	Up to 4,750	Intel	8223CL	Cascade Lake	3.10	3.40 8000 series (Skylake 8124M) processor with a sustained all core Turbo frequency of up to 3.4GHz, and
eneral	M5a	m5a.2xlarge	\$173.01	8	32	4	EBS-Only	Up to 10	Up to 2,880	AMD	7571	EPYC	2.50	AMD EPYC 7000 series processors (AMD EPYC 7571) with an all core turbo clock speed of 2.5 GHz
mpute	C5a	c5ad.2xlarge	\$173.74	8	16	2	NVMe	up to 10	up to 3,170	AMD	7R32	EPYC		3.30 2nd generation AMD EPYC 7002 series processors (AMD EPYC 7R32) running at frequencies up to 3.3
mpute	C6gn	c6gn.2xlarge	\$175.16	8	16	2	EBS-Only	Up to 25	Up to 9.5	AWS		Graviton2		AWS Graviton2 Processor with 64-bit Arm Neoverse cores
ompute	C6i	сбі.2xlarge	\$180.60	8	16	2	EBS-Only	Up to 12.5	Up to 10	Intel	8375C	Ice Lake	2.90	3.50 Up to 3.5 GHz 3rd generation Intel Xeon Scalable processors (Ice Lake 8375C)
eneral	M6g	m6gd_2xlarge	\$182.14	8	32	4	NVMe	Up to 10	Up to 4,750	AWS		Graviton2		AWS Graviton2 Processor with 64-bit Arm Neoverse cores
eneral	M6a	m6a.2xlarge	\$183.58	8	32	4	EBS-Only	Up to 12.5	Up to 6.6	AMD	7R13	EPYC		3.60 Up to 3.6 GHz 3rd generation AMD EPYC processors (AMD EPYC 7R13)
eneral	M5	m5.2xlarge	\$193.45	8	32	4	EBS-Only	Up to 10	Up to 4,750	Intel	8175M	Skylake		3.10 Up to 3.1 GHz Intel Xeon Scalable processor (Skylake 8175M or Cascade Lake 8259CL)
mpute	C5	c5d.2xlarge	\$193.45	8	16	2	NVMe	Up to 10	Up to 4,750	Intel	8223CL	Cascade Lake	3.10	3.40 8000 series (Skylake 8124M) processor with a sustained all core Turbo frequency of up to 3.4GHz, and
eneral	M4	m4.2xlarge	\$199.00	8	32	4	EBS-only	High	1000	Intel	E5-2686	Broadwell	2.30	2.40 Up to 2.4 GHz Intel Xeon Scalable Processor (Broadwell E5-2686 v4 or Haswell E5-2676 v3)
mpute	C4	c4.2xlarge	\$202.21	8	15	2	EBS-Only	High	1000	Intel	E5-2666	Haswell		2.90 Up to 2.9 GHz Intel Xeon Scalable Processor (Haswell E5-2666 v3)
emory	R6g	r6g.2xlarge	\$203.09	8	64	8	EBS-Only	Up to 10	Up to 4,750	AWS		Graviton2		AWS Graviton2 Processor
eneral	M6i	m6i.2xlarge	\$203.98	8	32	4	EBS-Only	Up to 12.5	Up to 10	Intel	8375C	Ice Lake	2.90	3.50 Up to 3.5 GHz 3rd generation Intel Xeon Scalable processors (Ice Lake 8375C)
mpute	C6i	c6id.2xlarge	\$204.04	8	16	2	VMe SSD	Up to 12.5	Up to 10	Intel	8375C	Ice Lake	2.90	3.50 Up to 3.5 GHz 3rd generation Intel Xeon Scalable processors (Ice Lake 8375C)
eneral	M5a	m5ad_2xlarge	\$207.32	8	32	4	NVMe	Up to 10	Up to 2,880	AMD	7571	EPYC	2.50	AMD EPYC 7000 series processors (AMD EPYC 7571) with an all core turbo clock speed of 2.5 GHz
mpute	C5n	c5n.2xlarge	\$217.54	8	21	3	EBS-Only	Up to 25	Up to 4,750	Intel	8124	Skylake	3.00	3.0 GHz Intel Xeon Platinum processors (Skylake 8124)
emory	R5a	r5a.2xlarge	\$227.76	8	64	8	EBS-Only	Up to 10	Up to 2,880	AMD	7571	EPYC	2.50	AMD EPYC 7000 series processors (AMD EPYC 7571) with an all core turbo clock speed of 2.5 GHz
eneral	M5	m5d.2xlarge	\$227.76	8	32	4	NVMe	Up to 10	Up to 4,750	Intel	8175M	Skylake		3.10 Up to 3.1 GHz Intel Xeon Scalable processor (Skylake 8175M or Cascade Lake 8259CL)
emory	R6g	r6gd.2xlarge	\$232.14	8	64	8	NVMe	Up to 10	Up to 4,750	AWS		Graviton2		AWS Graviton2 Processor
eneral	M5n	m5n.2xlarge	\$239.44	8	32	4	EBS-Only	Up to 25	Up to 4,750	Intel	8259CL	Cascade Lake	3.10	3.50 frequency of 3.1 GHz and maximum single core turbo frequency of 3.5 GHz
neral	M6i	m6id.2xlarge	\$240.10	8	32	4	VMe SSD	Up to 12.5	Up to 10	Intel	8375C	Ice Lake	2.90	3.50 Up to 3.5 GHz 3rd generation Intel Xeon Scalable processors (ke Lake 8375C)
emory	R6a	r6a.2xlarge	\$240.94	8	64	8	EBS-Only	Up to 12.5	Up to 6.6	AMD	7R13	EPYC		3.60 Up to 3.6 GHz 3rd generation AMD EPYC processors (AMD EPYC 7R13)
orage	H1	h1.2xlarge	\$254.04	8	32	4	HDD	Up to 10	77	Intel	E5-2686	Broadwell	2.30	2.3 GHz Intel Xeon Scalable Processor (Broadwell ES 2686 v4)
emory	RS	r5.2xlarge	\$254.04	8	64	8	EBS-Only	up to 10	Up to 4,750	Intel	8175M	Skylake		3.10 Up to 3.1 GHz Intel Xeon* Platinum 8000 series processors (Skylake 8175M or Cascade Lake 8259CL)
emory	R5a	r5ad.2xlarge	\$264.26	8	64	8	NVMe	Up to 10	Up to 2,880	AMD	7571	EPYC	2.50	AMD EPYC 7000 series processors (AMD EPYC 7571) with an all core turbo clock speed of 2.5 GHz
emory	RGi	r6i.2xlarge	\$267.72	8	64	8	EBS-Only	Up to 12.5	Up to 10	Intel	8375C	Ice Lake	2.90	3.50 Up to 3.5 GHz 3rd generation Intel Xeon Scalable processors (Ice Lake 8375C)
emory	R4	r4.2xlarge	\$269.81	8	61	8	EBS-Only	Up to 10	001010	Intel	E5-2686	Broadwell	2.30	2.30 Intel Xeon scalable (Broadwell E5-2686 v4) processors up to 2.3 Gbz
eneral	MSn	m5dn 2xlarge	\$273.75	8	32	4	NVMe	Up to 25	Un to 4 750	Intel	825901	Cascade Lake	3 10	3 50 frequency of 3.1 GHz and maximum single core turbo frequency of 3.5 GHz
emory	RS	r5d.2xlarge	\$289.81	8	64	8	NVMe	up to 10	Up to 4,750	Intel	8175M	Skylake		3.10 Up to 3.1 GHz Intel Xeon* Platinum 8000 series processors (Skylake 8175M or Cascade Lake 8259CL)
emory	RSn	r5n 2xlarge	\$300.03	8	64	8	EBS-Only	Up to 25	Up to 4,750	Intel	8259CL	Cascade Lake	3.10	3.50 frequency of 3.1 GHz and maximum single core turbo frequency of 3.5 GHz
emony	RSb	r5h 2xlarge	\$301.51	8	64	8	FBS-Only	up to 10	Up to 10 000	Intel	8259CI	Cascade Lake	3 10	3 50 GHz and maximum single core turbo frequency of 3 5 GHz
emory	R6i	rhid Zylane	\$305.22	8	64	8	NVMe	lin to 12.5	Lin to 10	Intel	83750	Ice Lake	2 90	3 50 Lin to 3 5 GHz 3rd generation Intel Xeon Scalable processors (Ice Lake 8375C)
emony	¥2md	v2nd 2vlarna	\$330.54	8	128	16	NV/Ma	Up to 10	Unto 475	AWS	33736	Graviton?	4.30	AWS Gravitan2 Processor
meral	MSan	m5an 2viarna	\$324.27	9	32	4	FRS.Only	Up to 25	3170	Intel	82520	Carcada Laka		450 45 GHz
emony	RSn	r5dn 2xiarea	\$336.52	8	64	8	NVMe	Up to 25	lin to 4 750	Intel	82590	Cascade Lake	3.10	3.50 frequency of 3.1 GHz and maximum single core turbo frequency of 3.5 GHz
arama	13	13 Zviarea	\$343.83	9	61	8	NV/Ma	Up to 10	22	Intel	F5-2686	Broadwall	2 30	Intel Yann Scalable Processors (Broadwall FS, 2686 wit) with here framework of 2.3 GHz
orange.	:4:	Mi Zylarna	\$357.70	9	64	9	AMAS	Up to 12	lin to 10	Intel	83750	Joe Lake	2.30	3 50 Up to 3 5 GHz 3rd senantion intel Yang Scalable Procession (Ire Like 83757)
amon	21d	x1d 2viaree	\$374.40	8	64	8	NVMe	Up to 10	72	Intel	8151	Skulake	2.20	4.00 GHz
or and	Inden	Indan 2visen	\$374.60	8	32	4	3750 A	Up to 25	lin to 9 F	411/5	0131	Gravitor?		AWS Gradian?
orage.	i3 an	ilan 2vlarar	\$492.02	9	54		NVMa	Up to 25	32 22	Intel		Chulaka	3.10	3.1 Gbit all core turbo Intel [®] Yeon [®] Scalable (Studske) processors
or age	03	d2.2vlarge	\$492.02	0	64		HDD	Up to 25	1700	lotel	93500	Cascada Labo	3.10	3.10 Lip to 3.1 GHz 2nd Generation Intel [®] Xeon [®] Scalable (Carcada Laka) areas
urage	03	d2ap Jularc	\$503.10	0	22		HDD	Up to 15	1700	Intel	972ACT	Cascade Lake	3.10	2.1 Obta all core tude 2 and Constation Intel [®] Xeon [®] Scalable (Cascade Lake) processors
urage	D3en	d3 2 damage	\$532.17	8	52	4	2000 H	up to 25	1700	Intel	EE 2671	Lascade Lake	3.10	sus serve an over surdo and seneration intel® Adon" scalable (Lascade Lake) processors
orage	UZ Diede	uz.zxiarge	3043.32	8	01	8	2000 H	High	110.00.20	inter	63326	Haswell	2.40	miter Aeon acaraote Processors (Haswell E5-26/6 Vs) at 2.4 GRZ
emory	xZiedn	x2iedn.2xiarge	\$823.76	8	256	32	NVMe	up to 25	Up to 20	intel	63/5C	Ice Lake	2.90	3.50 Up to 3.5 GHz 3rd generation intel Xeon Scalable processors (ice Lake 837SC)
	110 210 210	xziezn.Zxlarge	5824.61	8	256	52	EBS-Only	Up to 25	3	intel	SZSZC	Lascade Lake		4.50 Up to 4.5 GHz 2nd generation Intel Xeon Scalable processors (Cascade Lake 8252C)

\$102

\$825

CONSTANT #2: Compute

15

To measure and compare, we need maximum 'constants' and minimal 'variables.

Worklo

CPU

300 warehouses (60 GB) – 96 concurrent users – 5 min. warmup – 20 min. run							
AWS RDS	AWS AURORA	AWS BIG ANIMAL	AZURE FLEX SERVER	AZURE BIG ANIMAL			
R6i-4xlarge Intel Ice Lake 16 cores 64GB RAM	R6i-4xlarge Intel Ice Lake 16 cores 64GB RAM	R6i-4xlarge Intel Ice Lake 16 cores 64GB RAM	E16ds_v4 (Intel® Ice Lake or the Intel® Cascade Lake processors) 16 cores 64GB RAM	E16s_v5 (Intel Ice Lake) 16 mores 128GB RAM			

HammerDB

© EnterpriseDB Corporation 2022 - All Rights Reso

Challenge #3 – What storage

No performance control

• Quoted for 600GB

Туре	MAX 'sustained' IOPS	MAX 'sustained' Throughput
Standard	Read: 450 Write: 900	Read: 72 MB/sec Write: 72 MB/sec
Balanced	Read: 3,600 Write: 3,600	Read: 72 MB/sec Write: 72 MB/sec
SSD	Read: 15,000 Write: 15,000	Read: 240 MB/sec Write: 240 MB/sec

https://cloud.google.com/compute/docs/disks/?&_ga=2.6276721 1.-658045011.1598996595#pdperformance

)B

aws

Туре	MAX 'sustained' IOPS	MAX Throughput				
Optimized HHD (st1)		MAX 147 MB/s max				
General Purpose SSD (gp2)	3000					
General Purpose SSD (gp3)	3000	500 MB/sec				
Provisioned IOPS SSD (io1)	MAX 30,000					
Provisioned IOPS SSD (io2)	MAX 64,000					
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-vol						

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-vo ume-types.html?icmpid=docs_ec2_console

- Azure has 'binary' pricing = 128GB, 256, 512GB, etc.
- Assume 1024 GB

Туре	MAX 'sustained' IOPS	MAX Throughput
Standard HDD	500	60 MB/sec
 Standard SSD	500	60 MB/sec
Premium SSD	5000	200 MB/sec
Ultra Disk	51,200*	768 MB/sec*
 https://docs.microsoft.	com/en-us/azure/v	irtual-machines/disks-ty

CONSTANT #3: Storage

To measure and compare, we need maximum 'constants' and minimal 'variables.

E CPU

RAM

STORAGE

64GB RAM

300GB - io1

storage at

7000 IOPS

HammerDB

64GB RAM

I have no

idea

300 warehouses (60 GB) - 96 concurrent users - 5 min. warmup - 20 min. run AZURE **AZURE BIG** AWS **AWS BIG AWS RDS** FLEX **AURORA** ANIMAL ANIMAL SERVER **CPU/RAM** E16ds v4 R6i-4xlarge E16s v5 R6i-4xlarge R6i-4xlarge (Intel® Ice Lake or the Intel Ice Lake Intel Ice Lake Intel Ice Lake Intel® Cascade Lake (Intel Ice Lake) 무무 processors) 16 cores 16 cores 16 cores 16 mores

64GB RAM

300GB - io2

storage at

7000 IOPS

© EnterpriseDB Corporation 2022 - All Rights Rese

16 cores

64GB RAM

Provisioned

2TB to get

7500 IOPS

128GB RAM

300GB -

Ultradisk at

7000 IOPS

Challenge #3 – Storage cost is confusing

((# of GB * \$0.14746)+(# of IOPS * \$0.06132)+(# of MBps * \$0.39566))*12

- Top performing storage: **Ultra Disk**
- You pay for it in discrete increments: 256GB, 512GB, 1024GB, etc
 - i.e. Even if you want a volume of 300GB you pay for 512GB
- You configure:
 - IOPS = operations/sec
 - Throughput = MBps

- Pricing (central-us)
 - \$0.14746/mon per GB
 - \$0.06132/mon per IOPS
 - \$0.39566/mon per MBps

© EnterpriseDB Corporation 2022 - All Rights

Good Willing Hunting

Example of VMs and their 'limits':

Name	Size	"Max uncached disk throughput IOPS/MBps"
E4ds_v4	4 CPU/32 GB	6,400 / 96
E8ds_v4	8 CPU/64 GB	12,800 / 192
E16ds_v4	16 CPU/128 GB	25,600 / 384
E32ds_v4	32 CPU/256 GB	51,200 / 768

Challenge #3.1 – Storage cost is confusing 🔊

((# of GB * \$0.10)+((730 hours * 60 mins * 60 sec * # of IOPS that second) * \$0.000002))*12

- aws
 - Inputs/Outputs per Second/Volume
 - \circ $\$ Gp2 has "Up to" 3 IOPS/GB
 - Gp3 has them "Up to" 16,000
 - IO1 and IO2 has them "Up to" 64,000
 - IO2 Block Express has them "Up to" 256,000
 - RDS supports gp2, gp3 and io1
 - Aurora is based on "Solid state drives"

Amazon Aurora PostgreSQL

• \$0.10/mon per GB

- \$0.0000002 /mon per IOPS
- Example of VMs and their 'limits':

Name	Size	Storage Bandwidth (Gbps)
R6i.xlarge	4 CPU/32 GB	"Up to" 10
R6i.2xlarge	8 CPU/64 GB	"Up to" 10
R6i.4xlarge	16 CPU/128 GB	"Up to" 10
R6i.8xlarge	32 CPU/256 GB	10

Do you find this pricing of storage in the cloud as complicated as I do?

000

R

 \bigcirc

aws AWS RDS: IOPS, Tuning and Cost

	IO1 IOPS	Annual Storage Cost	Annual Total Cost		
	30,000	\$36,900	\$45,531		
	20,000	\$24,900	\$32,331		
8 CPU	15,000	\$18,900	\$25,731		
64 GB RAM	10,000	\$12,900	\$19,131		
	7,000	\$9,300	\$15,171		
	5,000	\$6,900	\$12,531		
	4,000	\$5,700	\$11,211		

CONSTANT #4: Database

To measure and compare, we need maximur 'constants' minima 'variable

	Workload
--	----------

HammerDB

600 warehouses (120 GB) – 96 concurrent users – 5 min. warmup – 20 min. run

4		AWS RDS	AWS AURORA	AWS BIG ANIMAL	FLEX SERVER	AZURE BIG ANIMAL	
m and	CPU/RAM	R6i-4xlarge Intel Ice Lake 16 cores 64GB RAM	R6i-4xlarge Intel Ice Lake 16 cores 64GB RAM	R6i-4xlarge Intel Ice Lake 16 cores 64GB RAM	E16ds_v4 (Intel® Ice Lake or the Intel® Cascade Lake processors) 16 cores 64GB RAM	E16s_v5 (Intel Ice Lake) 16 mores 128GB RAM	
	STORAGE	300GB - io1 storage at 7000 IOPS	l have no idea	300GB - io2 storage at 7000 IOPS	Provisioned 2TB to get 7500 IOPS	300GB - Ultradisk at 7000 IOPS	
S	DATABASE	Community Postgres v14.5	Postgres 'Compatible' v14.5	Community Postgres v15.1	Community Postgres v14.4	Community Postgres v15.1	

© EnterpriseDB Corporation 2022 - All Rights Reserved

Challenge #4 – How to get to "optimized"

- Components
 - Picking the optimal CPU/RAM
 - Picking the optimal storage
- Postgres
 - Latest version
 - Configuration settings

OBJECTIVE: LEAST COST PER TPM

© EnterpriseDB Corporation 2022 - All Rights Reserved

Sum of Effort – thus far

• The effort

- Ran over 500 unique runs of HammerDB across the 3 clouds
- Maximized 'constants' database size, concurrency, run time, etc.
- Generated >30TBs of total data
- Each load-and-run takes 2 hours
- Objective
 - Compare and contrast offerings price AND performance
 - Identify optimizations

BigAnimal closes the gap between what enterprises need and the cloud service providers are offering today.

Unleash the power of Big Animal

Your Postgres database is too important to leave to generalists

Postgres Expertise

EDB's expertise goes above the infrastructure; we help steer the database roadmap and patch its bugs

Oracle Compatibility

Leave Oracle and further your cloud journey with a fully managed Postgres service

Extreme High Availability

High availability of your PostgreSQL clusters so you're always on, always available

© EnterpriseDB Corporation 2022 - All Rights Reserved

Finally – COST & MONEY - Aurora						
		Amazon Aurora			on aw	S
	What	AWS Aurora	EDB Big Animal with Community Postgres			
8 CPU	Cost	\$4,690.40	\$787.38	\$1,105.88	\$1,235.88	\$1,430.88
04 GD NAM	Storage	????	Gp3 at 7000 IOPS	lo2 at 5000 IOPS	lo2 at 7000 IOPS	lo2 at 10,000 IOPS
Higher better	Optimized Results	282,250	246,624	275,980	307,653	311,875
Lower better	\$s/TPM	\$0.017	\$0.003	\$0.004	\$0.004	\$0.005
Higher better	TPMs/\$	60	313	249	250	218
BEDB [™]						

© EnterpriseDB Corporation 2022 - All Rights Reserved

Let's look at the environments

1

Sal

BigAnimal compared to...

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

_~

What is next

- **Other databases:** Size/Benchmark other databases: MySql, SQLServer and Oracle
- Publish best-practices materials from raw data
 - Presentations, papers, blogs, webinars, etc
 - Get some immediate wins and renewals
- Help you make the right decisions in \$optimizing\$ cloud

Innovation Roadmap

Availability

- Cross-region availability
- Cross-region multi-master clustering
- Cross-cloud clustering
- Custom maintenance windows
- Adding Google Cloud Platform

Performance

- Faster access to clustered data
- Automate usage of connection pooler
- Realtime database tuning based on workload
- Separate WAL logs into own disk volume

Automation

- Storage auto clustering
- Self-serve major upgrade control
- Autoscale storage across clusters
- Automated Tuner

Cost Optimization

- Automate Hibernate/Resume
- Best price/ performance CPU VMs
- VM and storage workload optimization

Adding new regions

So what did we learn today

- There are a lot of ways cloud gets expensive with no value
- Confusion in how to select the right components
- You want to work with the right vendor with a focus on open-source Postgres
- Consider using a workload tool like HammerDB to give you something to measure-and-compare

Q+A Session

Got a question? Ask us using the button below

Contact Us

Tom Rieger tom.rieger@enterprisedb.com

Allison Davis

allison.davis@enterprisedb.com

© EnterpriseDB Corporation 2022 - All Rights Reserved