
# Cloud and Databases 101: Value, Sizing, and Best Practices

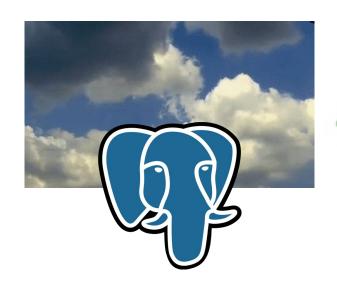
Tom Rieger

Senior Client Engineer








#### **House Keeping**

- We have a lot of materials to cover and plan on keep this within 45 minutes.
- In using Zoom's Webinar technology
  - Everyone is on <MUTE>
  - Questions are entered into the tool,
  - Online Polling will be used
  - We are recording the webinar and will share the private link shortly after the session





#### THANK YOU!!









# **Polling question**

#### Favorite Season?

- Spring
- Summer
- Fall
- Winter
- Don't have one love them all



#### **Agenda**

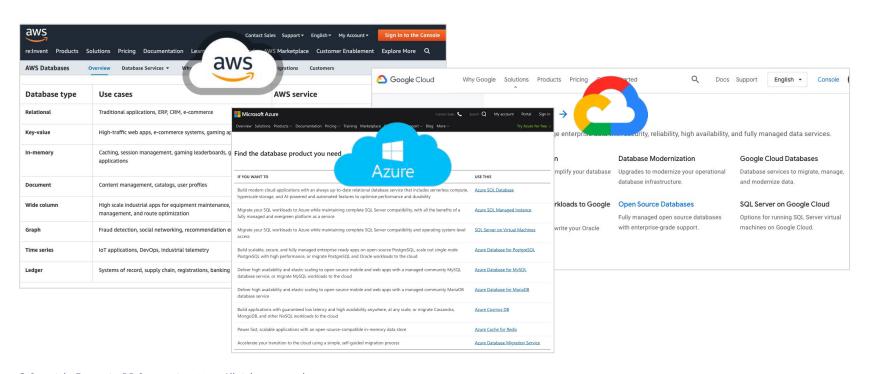
What I hope you take away from this session

- Cloud
- History of database sizing and measure
- Workloads
- Our 'sizing guide' effort
- Results thus far
- Lessons learned
- What is next





#### Cloud


It took evolutionary waves to get us to this point

- Email systems, websites, webcasting/webinars
- HR apps, CRM (Salesforce), file sharing
- Mobile-centric efforts
- Secondary database workloads with smaller requirements
- ......Critical workloads are next





# Cloud platform vendors make 'databases' confusing and 'lock in'







# **Polling question**

# Q. Do you feel there is a degree of confusion in the database offerings from cloud vendors?

- YES very confusing
- Somewhat
- Not really very clear
- Not sure to be honest



## History of database benchmarking and sizing

- General workloads
  - Transactional
  - Analytical
- Vendor-specific workloads
  - Database-specific
  - Vendor-specific SAP SD
- More fit-for-purpose
  - Load testing
  - Performance testing
  - IO performance
- Historically benchmarks were focused on
  - performance NOT economics



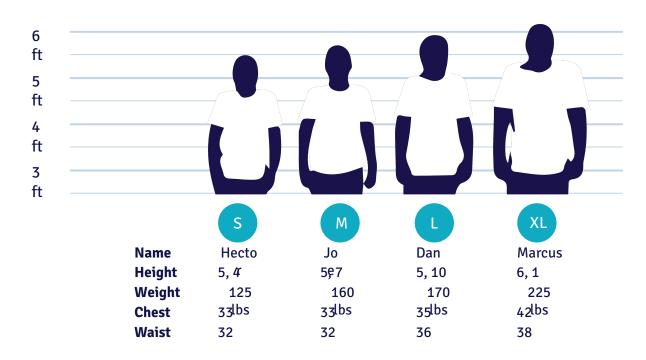
-VS-





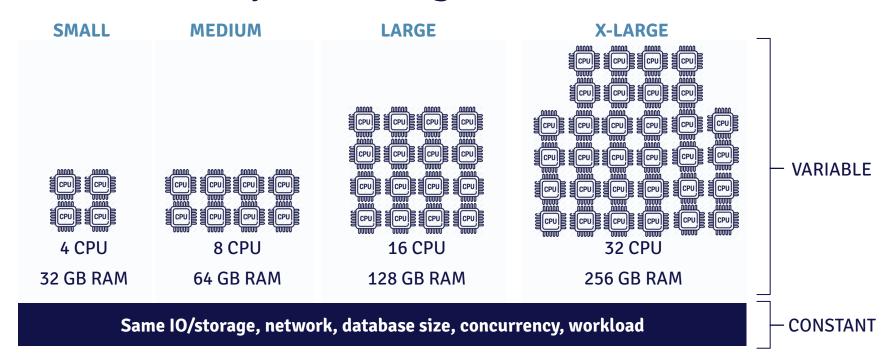


## Traditionally, IT sizing was like a 'tailored suit'...


#### Up to now:

'Educated guesses' and 'release note analysis' to decide sizing and cost.






### The cloud allows a more elastic 't-shirt' sizing





#### Think of cloud provisioning as 't-shirt' sizes





#### The effort at hand - OPTIMIZATION

- Evaluate the optimal mix of CPU, RAM, storage and network available
- Use a defensible, standards-based workload that clients can also utilize in their own environment
- Measure technical results, time studies and financial business case
- Publish application works for EDB clients scripts, videos, calculators, best practices, how-tos, business case assessment templates













# Example: Amazon brings a lot of choices 44 different choices with '8 cores'







| Purpose =             | instance Name = | CPU T | RAM | EBS ban  | dwidth    | ■ Vetwork bandwidth   ■ | Storage =          | PER MONTH  |
|-----------------------|-----------------|-------|-----|----------|-----------|-------------------------|--------------------|------------|
| General Purpose       | a1.2xlarge      | 8     | 16  |          |           | Up to 10                | EBS Only           | \$93.81    |
| General Purpose       | t4g.2xlarge     | 8     | 32  | Up t     | 0 2,780   | Up to 5 GBps            | EBS Only           | \$123.08   |
| General Purpose       | c6g.2xlarge     | 8     | 16  | Upt      | 0 4,750   | Up to 10                | EBS Only           | \$125.12   |
| General Purpose       | t3a.2xlarge     | 8     | 32  |          |           | Up to 5 GBps            | EBS Only           | \$137.68   |
| General Purpose       | m6g.2xlarge     | 8     | 32  | Up t     | 0 4,750   | Up to 10                | EBS Only           | \$141.04   |
| General Purpose       | c6gd.2xlarge    | 8     | 16  | Up t     | 0 4,750   | Up to 10                | 1 x 474 NVMe SSD   | \$141.25   |
| General Purpose       | c5a.2xlarge     | 8     | 16  | Up t     | 0 3,170   | Up to 10                | EBS Only           | \$141.62   |
| General Purpose       | t3.2xlarge      | 8     | 32  |          |           | Up to 5 GBps            | EBS Only           | \$152.28   |
| General Purpose       | c5.2xlarge      | 8     | 16  | Up t     | o 4,750   | Up to 10                | EBS Only           | \$156.22   |
| General Purpose       | c6gn.2xlarge    | 8     | 16  | Up       | to 9.5    | Up to 25 Gbps           | EBS Only           | \$159.21   |
| General Purpose       | t2.2xlarge      | 8     | 32  |          |           | Moderate                | EBS Only           | \$167.90   |
| General Purpose       | c5d.2xlarge     | 8     | 16  | Up t     | 0 4,750   | Up to 10                | 1 x 200 NVMe SSD   | \$176.66   |
| General Purpose       | m5.2xlarge      | 8     | 32  | Up t     | 0 4,750   | up to 10Gbps            | EBS Only           | \$176.66   |
| General Purpose       | m4.2xlarge      | 8     | 32  | 1        | ,000      | High                    | EBS Only           | \$180.89   |
| General Purpose       | c4.2xlarge      | 8     | 15  | 1        | ,000      | High                    | EBS Only           | \$183.96   |
| Memory Optimized      | r6g.2xlarge     | 8     | 64  | Up t     | 0 4,750   | Up to 10                | EBS Only           | \$185.42   |
| General Purpose       | c5n.2xlarge     | 8     | 16  | Up t     | 0 4,750   | Up to 25 Gbps           | EBS Only           | \$198.56   |
| Memory Optimized      | r5a.2xlarge     | 8     | 64  | Upt      | 0 2,880   | Up to 10                | EBS Only           | \$208.05   |
| General Purpose       | m5d.2xlarge     | 8     | 32  | Up t     | 0 4,750   | Up to 10Gbps            | 1 x 300 NVMe       | \$208.05   |
| Memory Optimized      | r6gd.2xlarge    | 8     | 64  | Upt      | 0 4,750   | Up to 10                | 1 x 474 NVMe SSD   | \$211.92   |
| General Purpose       | m5n.2xlarge     | 8     | 32  | Up t     | 0 4,750   | Up to 25 Gbps           | EBS Only           | \$219.00   |
| Storage Optimized     | h1.2xlarge      | 8     | 32  |          |           | Up to 10 Gigabit        | 1 x 2,000GB HDD    | \$232.14   |
| Memory Optimized      | r5.2xlarge      | 8     | 64  | Up t     | 0 4,750   | Up to 10 Gbps           | EBS Only           | \$232.14   |
| Memory Optimized      | r5ad.2xlarge    | 8     | 64  | Up t     | 0 2,880   | Up to 10                | 1 x 300 NVMe SSD   | \$240.90   |
| Memory Optimized      | r4.2xlarge      | 8     | 61  |          |           | Up to 10                | EBS Only           | \$245.28   |
| General Purpose       | m5dn.2xlarge    | 8     | 32  | Up t     | 0 4,750   | Up to 25 Gbps           | 1 x 300 NVMe       | \$250.39   |
| Memory Optimized      | r5d.2xlarge     | 8     | 64  | Upt      | 0 4,750   | Up to 10 Gbps           | 1 x 300 NVMe       | \$264.99   |
| Accelerated Computing | inf1.2xlarge    | 8     | 16  | Up to 4  | 1.75 Gbps | Up to 25 Gbps           | EBS Only           | \$268.64   |
| Accelerated Computing | f1.2xlarge      | 8     | 122 |          |           | Up to 10                | 470 GB             | \$268.64   |
| Memory Optimized      | r5n.2xlarge     | 8     | 64  | Up t     | 0 4,750   | Up to 25 Gbps           | EBS Only           | \$273.75   |
| Memory Optimized      | r5b.2xlarge     | 8     | 64  | Up to    | 10,000    | Up to 10                | EBS Only           | \$274.12   |
| Memory Optimized      | r5b.2xlarge     | 8     | 64  | Up to    | 10,000    | Up to 10 Gpbs           | EBS Only           | \$274.12   |
| General Purpose       | m5zn.2xlarge    | 8     | 32  | 3        | 170       | Up to 25 Gbps           | EBS Only           | \$303.83   |
| Memory Optimized      | r5dn.2xlarge    | 8     | 64  | Up t     | 0 4,750   | Up to 25 Gbps           | 1 x 300 NVMe       | \$307.33   |
| Storage Optimized     | i3.2xlarge      | 8     | 61  |          |           | Up to 10 Gbps           | 1 x 1,900 NVMe     | \$312.44   |
| Memory Optimized      | z1d.2xlarge     | 8     | 64  |          |           | Up to 10 Gigabit        | 1 x 300 NVMe SSD   | \$342.27   |
| Accelerated Computing | g4dn.2xlarge    | 8     | 32  |          |           | Up to 25 Gbps           | 225 GB             | \$346.02   |
| Storage Optimized     | i3en.2xlarge    | 8     | 64  |          |           | Up to 25 Gbps           | 2 x 2,500 NVMe SSD | \$449.68   |
| Storage Optimized     | d3.2xlarge      | 8     | 64  | 1        | ,700      | Up to 15                | 6 x 2TB HDD        | \$459.17   |
| Storage Optimized     | d2.2xlarge      | 8     | 61  |          |           | High                    | 6 x 2000 HDD       | \$586.92   |
| Memory Optimized      | x1e.2xlarge     | 8     | 122 | Dedicate | d 500 Mbp | s Up to 10 Gbps         | EBS + 120GB SSD    | \$750.44   |
| Accelerated Computing | p3.2xlarge      | 8     | 61  | 14       | Gbps      | Up to 25 Gbps           | EBS Only           | \$1,524.24 |
| General Purpose       | c5ad.2xlarge    | 8     | 16  | Up t     | 0 3,170   | Up to 10                | 1 x 300 NVMe SSD   | ??         |
| Storage Optimized     | d3en.2xlarge    | 8     | 32  | 1        | ,700      | Up to 25 Gbps           | 4 x 14TB HDD       | ??         |

93.81/ month



\$1,524.24/ month



#### The real abstract topic - STORAGI





Google Cloud

- No performance control
- Ouoted for 600GB

| Туре     | MAX<br>'sustained'<br>IOPS    | MAX<br>'sustained'<br>Throughput      |
|----------|-------------------------------|---------------------------------------|
| Standard | Read: 450<br>Write: 900       | Read: 72 MB/sec<br>Write: 72 MB/sec   |
| Balanced | Read: 3,600<br>Write: 3,600   | Read: 72 MB/sec<br>Write: 72 MB/sec   |
| SSD      | Read: 15,000<br>Write: 15,000 | Read: 240 MB/sec<br>Write: 240 MB/sec |

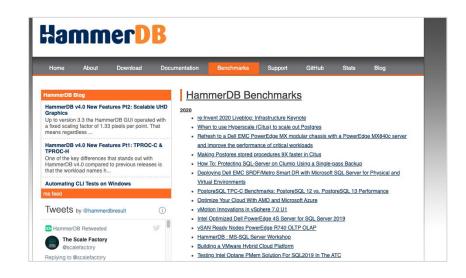
https://cloud.google.com/compute/docs/disks/?& ga=2.627672 11.-658045011.1598996595#pdperformance



 All about which level and what you are willing to pay - 600GB sizing

| Туре                                                               | MAX<br>'sustained'<br>IOPS | MAX<br>Throughput   |  |  |
|--------------------------------------------------------------------|----------------------------|---------------------|--|--|
| Optimized HHD (st1)                                                |                            | MAX 147 MB/s<br>max |  |  |
| General Purpose<br>SSD (gp2)                                       | 3000                       |                     |  |  |
| General Purpose<br>SSD (gp3)                                       | 3000                       | 500 MB/sec          |  |  |
| Provisioned IOPS<br>SSD (io1)                                      | MAX 30,000                 |                     |  |  |
| Provisioned IOPS<br>SSD (io2)                                      | MAX 64,000                 |                     |  |  |
| https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-typ |                            |                     |  |  |




- Azure has 'binary' pricing = 128GB, 256, 512GB, etc.
- Assume 1024 GB

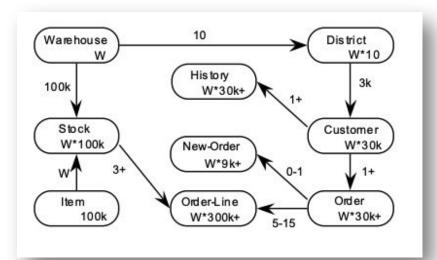
| Туре         | MAX<br>'sustained<br>' IOPS | MAX<br>Throughput |
|--------------|-----------------------------|-------------------|
| Standard HDD | 500                         | 60 MB/sec         |
| Standard SSD | 500                         | 60 MB/sec         |
| Premium SSD  | 5000                        | 200 MB/sec        |
| Ultra Disk   | 51,200*                     | 768 MB/sec*       |



#### Workloads for this effort - Why?

- HammerDB is open-source evolving, community and free
- Standards based
  - TPC-C for transactional
  - TPC-H for analytical
- Works with all major databases Oracle, SQLServer, DB2, MySQL, Postgres





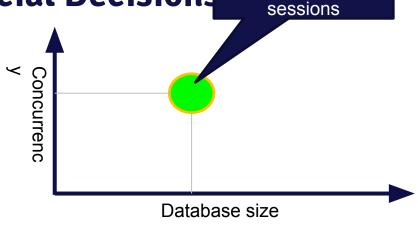



# **Quick Anatomy of TPC-C**

- Order Processing Use-case
- Typical Transactional use case
  - Simple SQL
  - Large in volume
- Two primary 'knobs' to size the effort
  - Warehouses database size
  - User Concurrency
- Resulting measure: Transactions-per-minute (TPM)

#### **Hammer DB**




| Action Type | Mix |
|-------------|-----|
| SELECT      | 75% |
| INSERT      | 8%  |
| UPDATES     | 16% |
| DELETE      | 1%  |



**NEXT STEP: Technical/Financial Decisions** 

 Two Dimensions – database size and concurrent sessions

- What virtual machines to use
- What storage to use and
- Norte: twne it (where offer possible) CPU



120GB and 96

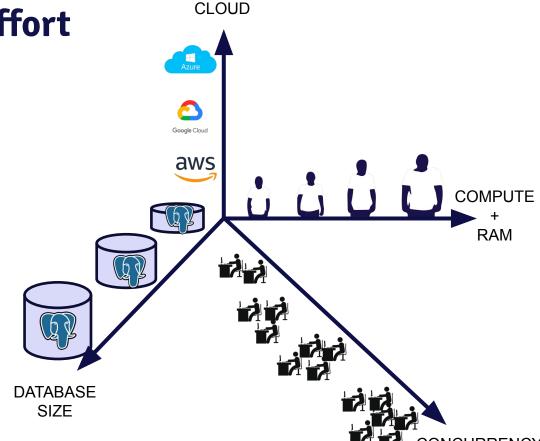
concurrent

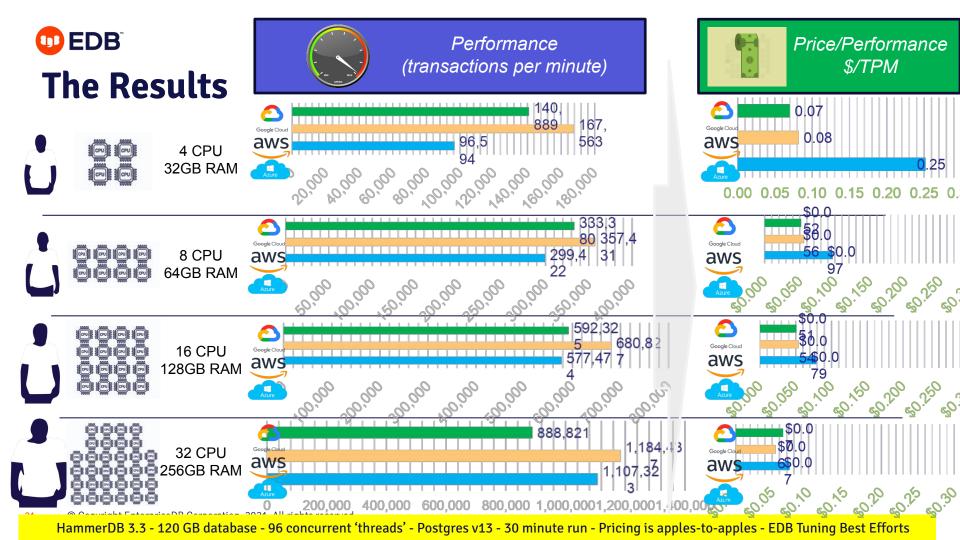


| aws          | Google Cloud  | Azure        |  |
|--------------|---------------|--------------|--|
| 3.2Ghz Intel | 2.8 Ghz Intel | 2.6Ghz Intel |  |



#### How to best tune the database


- Postgres Configuration Settings
- Disk volume utilization
- Monitoring and measuring
- Attempts and mistakes trying the different tunings, cloud pieces-and-parts and the definition of 'good'
- Internal 'mock trials' to test the thesis
- Engaged customers to validate process and results






#### The dimensions of the effort

- HammerDB 3.3 running on its own 4-way server
- Ran over 360 separate benchmark runs across AWS, Azure and Google
- Generated over 33.3TBs of data across different sized instances
- Evaluated different storage, Postgres configurations and more







#### Be prepared for...



#### Google Cloud

- No way to control disk performance
- Cheapest disk for the performance – but no top tier storage
- Smallest number of choices in CPU/RAM
- Most proactive is showing how to save money



- STORAGE is EXPENSIVE: The pre-reserved IOPS storage is confusing. How much do you need?
- VM: Chose the same sized VMs as used by RDS – on purpose!
- NVMe storage does not persist after server bounce
- DBaaS config settings are obfuscated



- STORAGE is EXPENSIVE:
   Their 'Ultra disk' and the
   IOPS and throughput math =
   confusing
- Problems with provisioning
- Make sure you understand 'resource quotas'
- DBaaS config least control of Postgres config file

They all offer fundamental 'monitoring' of mostly hardware resources – and little in the way of database



## Storage in the cloud – and price/performance



#### Example:

Microsoft Azure

- Top performing storage: Ultra Disk
- You pay for it in discrete increments: 256GB, 512GB, 1024GB, etc
  - i.e. Even if you want a volume of 300GB you pay for 512GB
- You configure:
  - IOPS = operations/sec
  - Throughput = MBps



#### Pricing

- \$0.15/mon per GB
- \$0.06/mon per IOPS
- \$1.23/mon per MBps
- For our sizing efforts we used the

| Name     | Size          | "Max uncached disk throughput IOPS/MBps" |
|----------|---------------|------------------------------------------|
| E4ds_v4  | 4 CPU/32 GB   | 6400/96                                  |
| E8ds_v4  | 8 CPU/64 GB   | 12800/192                                |
| E16ds_v4 | 16 CPU/128 GB | 25600/384                                |
| E32ds_v4 | 32 CPU/256 GB | 51200/768                                |



# Storage in the cloud – and price/performance

| Example:  Azure Microsoft Azure                                                                    | IOPS   | MBps  | Result: TPM | Monthly<br>Storage Cost | \$/TPM |
|----------------------------------------------------------------------------------------------------|--------|-------|-------------|-------------------------|--------|
| Azdic                                                                                              | 35,000 | 2,000 | 303,163     | \$9,378                 | \$0.42 |
| <ul> <li>MEDIUM T-Shirt</li> </ul>                                                                 |        |       |             |                         |        |
| • 120GB database                                                                                   |        |       |             |                         |        |
| <ul> <li>96 concurrent sessions</li> </ul>                                                         |        |       |             |                         |        |
| <ul><li>5 minute 'warm-up' and<br/>30 minute run</li></ul>                                         |        |       |             |                         |        |
| <ul> <li>Started with a fresh<br/>database each time</li> </ul>                                    |        |       |             |                         |        |
| ONLY VARIABLE CHANGE  WAS DISK © Copyright EnterpriseDB Corporation, 2021. All rights PERFORMANCE! |        |       |             |                         |        |



#### Storage in the cloud – and price/performance



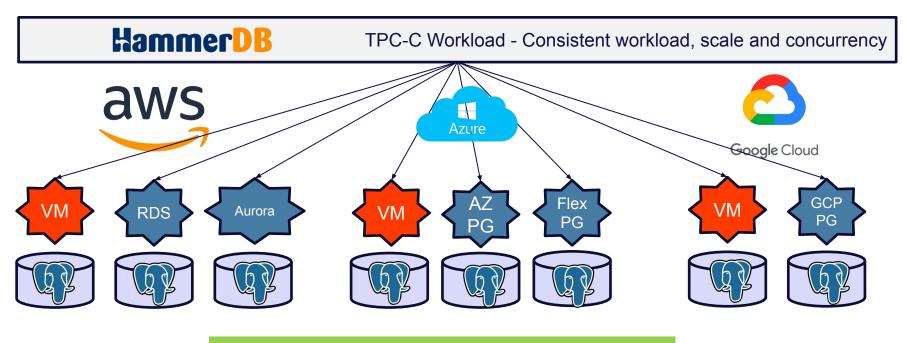
AWS EC2 and lo2 disk

- MEDIUM T-Shirt
- 120GB database
- 96 concurrent sessions
- 5 minute 'warm-up' and 30 minute run
- Started with a fresh database each time
- ONLY VARIABLE CHANGE WAS DISK PERFORMANCE!

| IOPS   | Result: TPM | Monthly<br>Storage Cost | \$/TPM |
|--------|-------------|-------------------------|--------|
| 35,000 | 352,863     | \$2,291                 | \$0.12 |
| 30,000 | 351,260     | \$2,025                 | \$0.11 |
| 20,000 | 357,431     | \$1,375                 | \$0.09 |
| 15,000 | 354,238     | \$1,050                 | \$0.08 |
| 10,000 | 353,212     | \$725                   | \$0.07 |
| 7,000  | 355,717     | \$530                   | \$0.06 |
| 5,000  | 353,743     | \$400                   | \$0.05 |
| 4,000  | 349,428     | \$335                   | \$0.05 |
| 3,500  | 340,057     | \$302                   | \$0.05 |
| 3,000  | 327,774     | \$270                   | \$0.06 |






# **Polling question**

#### Q: You you be interested in this level of findings on these cloud offerings:

- AWS RDS Postgres?
- AWS Aurora Postgres?
- Azure Single Server Postgres?
- Azure Flexible Server Postgres?
- Google Cloud Postgres?
- Oracle?
- SQLServer?



#### Multi-Cloud Sizing and Benchmarking – to help you decide



Is this interesting? Tell me in the Q/A



#### **Deliverables to you**

Make it all more predictable and prescriptive



"How to" – Legacy workload evaluation documents and reproducible scripts



Best practices around cloud setup and database configuration



Create time study and formulation documents and tools

- How long to accomplish each task
- Based on workload size, what size and configuration recommendations



Financial business case formulas and documents to help speak in 'debit/credit' lexicon



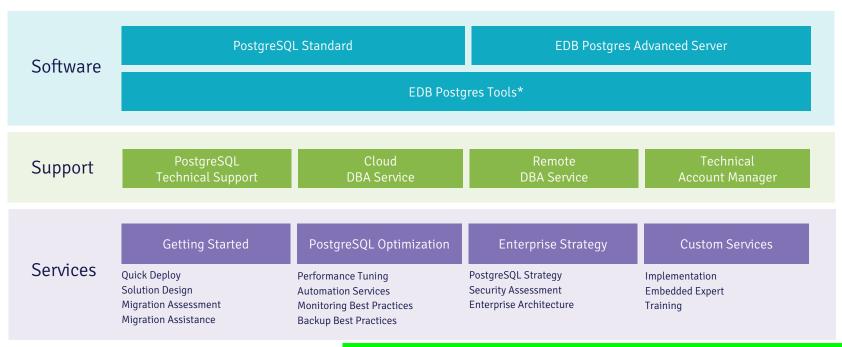


# **Polling question**

#### Would you find this useful?

- Yes very much
- I think so
- Not really
- Not sure




#### **Key Takeaways**

- It is difficult to technically compare cloud database offerings – but cost-per-transaction is the most important measure.
- Most enterprises inadvertently over-provision and over-pay for Postgres in the cloud. Consider the storage examples.
- Some cloud offerings restrict your flexibility to tune, configure and optimize based on your unique workloads.
- Some DBaaS offerings are built on obsolete hardware and older releases of Postgres
- Let us know if you want to have a specific conversation by cloud and need





#### **EDB offerings**



<sup>\*</sup> Postgres Enterprise Manager, Backup and Recovery Tool, Failover Manager, Replication Server, Containers, Kubernetes Operator, PostGIS, Pgpool, PgBouncer, Connectors, Foreign Data Wrappers, Migration Toolkit

POSTGRES VISION 2021

Register Now

**POSTGRES VISION** 2021

**JUNE 22 - 23** 

postgresvision.com

#### The Future is Postgres



Global event



2 full days



Multiple tracks



PostgreSQL experts and customers



Interaction with colleagues



PostgreSQL community connection



#### In closing



#### **Questions**

Please make sure if you have questions to type them into the tool



#### **Exit survey**

There is an exit survey that will pop up – please tell us your thoughts on this webinar



#### **Contact us**

Tom Rieger – tom.rieger@enterprisedb.com CALL ME – 952-221-6514 <LINKEDIN> www.enterprisedb.com