
 An EnterpriseDB
 White Paper

For DBAs, Developers
& Database Architects
July 2015

Using the NoSQL Capabilities in
Postgres

Using the NoSQL Capabilities in Postgres

Why NoSQL? 3

PostgreSQL NoSQL Capabilities 3

Document Database-JSON 4

Key-Value Pairs - HSTORE 7

Integrating JSON and HSTORE 8

JSONB – Binary JSON 10

JSON and PL/V8 – Javascript for Postgres 11

Combining ANSI SQL Queries and JSON
Queries

12

Bridging Between ANSI SQL and JSON 14

EDB Comparative Performance Tests 15

Postgres: NoSQL for the Enterprise 17

About EnterpriseDB 17

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 2

 Table of Contents

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Businesses and technology teams are demanding greater flexibility,
faster time to market and continuous refinement of existing systems.
This requires an unprecedented agility in data management that
traditional relational database management systems have been striving
to deliver. NoSQL-only solutions, such as document stores and key-
value stores, emerged to support incremental development
methodologies where data models emerge as the application goes
through cycles of agile development. This is in contrast to traditional
methods of carefully crafting data models upfront using ER-
diagramming, normal form analysis, and conceptual/logical/physical
design frameworks.

PostgreSQL (often called Postgres) introduced JSON and HSTORE to
provide solution architects and developers a schema-less data
management option that is fully integrated with Postgres’ robust ACID
(Atomic, Consistent, Isolation and Durable) model. HSTORE has been
an integral part of Postgres since 2006; JSON was first introduced in
Postgres v9.2. With the upcoming release of Postgres v9.4 this fall,
Postgres’ NoSQL capabilities will dramatically expand and performance
will skyrocket.

This paper reviews and illustrates Postgres’ NoSQL capabilities in the
context of Postgres’ robust relational competencies. The paper also
describes performance tests that demonstrate that Postgres, the
leading open source relational database solution, is a superior platform
for handling many NoSQL workloads.

Postgres was originally architected to be an object-relational database
designed specifically to enable extensibility. It supports objects,
classes, custom data types and methods. In the early years of the
Postgres project this was problematic as it slowed down development
cycles because new code had to be fully integrated so everything
would work with everything else. However, as Postgres has become

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 3

Why NoSQL?

Postgres NoSQL Capabilities

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

more feature rich over the past 15 years, that original design hurdle
has turned into a unique advantage. The fact that Postgres is an
object-relational database means new capabilities can be developed
and plugged into the database as needs evolve.

Using this level of extensibility, Postgres developers have expanded
the database to include new features and capabilities as new
workloads requiring greater flexibility in the data model emerged. The
most relevant examples in the NoSQL discussion are JSON and
HSTORE. With JSON and HSTORE, Postgres can support
applications that require a great deal of flexibility in the data model.

Document Database – JSON

Document database capabilities in Postgres advanced significantly
when support for the JSON data type was introduced in 2012 as part of
Postgres 9.2. JSON (JavaScript Object Notation) is one of the most
popular data-interchange formats on the web. It is supported by
virtually every programming language in use today, and continues to
gain traction. Some NoSQL-only systems, such as MongoDB, use
JSON (or its more limited binary cousin BSON) as their native data
interchange format.

Postgres offers robust support for JSON. Postgres has a JSON data
type, which validates and stores JSON data and provides functions for
extracting elements from JSON values. And, it offers the ability to
easily encode query result sets using JSON. This last piece of
functionality is particularly important, as it means that applications that
prefer to work natively with JSON can easily obtain their data from
Postgres in JSON.

Below are some examples of using JSON data in Postgres.

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 4

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Figure 1: JSON Data Examples

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 5

JSON data examples:

Creating a table with a JSONB field

CREATE TABLE json_data (data JSONB);

Simple JSON data element:

{"name": "Apple Phone", "type": "phone", "brand":
"ACME", "price": 200, "available": true,
"warranty_years": 1}

Inserting this data element into the table json_data

INSERT INTO json_data (data)
VALUES
('

{
"name": "Apple Phone",
"type": "phone",
"brand": "ACME",
"price": 200,
"available": true,
"warranty_years": 1
}

')

JSON data element with nesting:

{“full name”: “John Joseph Carl Salinger”,
“names”:

[
{"type": "firstname", “value”: ”John”},
{“type” : “middlename”, “value”: “Joseph”},
{“type” : “middlename”, “value”: “Carl”},
{“type” : “lastname”, “value”: “Salinger”},
]

}

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Figure 2: JSON Query Example

Figure 3: JSON Query Example

In addition to the native JSON data type, Postgres v9.3, released in
2013, added a JSON parser and a variety of JSON functions. This
means web application developers don't need translation layers in
the code between the database and the web framework that uses
JSON. JSON-formatted data can be sent directly to the database
where Postgres will not only store the data, but properly validate it
as well. With JSON functions, Postgres can read relational data
from a table and return it to the application as valid JSON formatted
strings. And, the relational data can be returned as JSON for either

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 6

Extracting a list of products from JSON data

SELECT DISTINCT
data->>'name' as products

FROM json_data;
products

 Cable TV Basic Service Package
 AC3 Case Black
 Phone Service Basic Plan
 AC3 Phone
 AC3 Case Green
 Phone Service Family Plan
 AC3 Case Red
 AC7 Phone
 AC3 Series Charger
 Phone Extended Warranty
 Phone Service Core Plan
(11 rows)

Extracting a list of products for the brand ‘ACME’

SELECT DISTINCT
data->>'name' AS "Product Name",
data->>'price' AS "price"

FROM json_data
WHERE data->>'brand' = 'ACME';

 Product Name | price
--------------+-------
 AC3 Phone | 200
 AC7 Phone | 320
(2 rows)

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

a single value or an entire record, as given below:

Figure 4: JSON Query Example

Figure 5: JSON Query Example

Key-Value Pairs – HSTORE

The HSTORE contrib module, which can store key/value pairs
within a single column, enables users to create a schema-less key-
value store. But unlike with NoSQL-only solutions, a key-value store
created in Postgres is ACID compliant.

HSTORE was introduced in Postgres 8.2 in 2006 and pre-dates
many NoSQL advances. Its popularity has expanded in recent
years with new demands for working with semi-structured data. It is
a particularly handy tool for web developers or someone building an
application that requires the ACID properties of Postgres as well as
NoSQL capabilities.

HSTORE is not hierarchical, but the HSTORE data type offered

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 7

Fetching JSON data using SELECT

SELECT data FROM json_data;

data
--

 {"name": "Apple Phone", "type": "phone", "brand":
"ACME", "price": 200, "available": true,
"warranty_years": 1}
(1 row)

Extract the price of an Apple phone

SELECT
data->>'price' as iphone_price

FROM json_data
WHERE data->>'name'='Apple Phone';

 iphone_price

 200
(1 row)

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

advanced indexing support early on, which made it the solution of
choice for many applications. It is particularly useful for sparse
attributes – instead of creating a large number of columns, each of
which will be non-null for only a small percentage of the records in
the table, database administrators can create a single HSTORE
column and include, for each row, only those keys which pertain to
that record. For instance, this is quite useful for storing multiple
product descriptions in a single table where each product only
shares a few attributes like name, price and weight, but have many
different attributes based on the type of product.

Just like JSON, HSTORE can be used to emulate a schema-less
database when that is desirable. Ultimately, this fills a unique need
in relational table storage by not requiring additional space for
attributes that will never have a value for many records. It allows
database administrators to store very different types of records with
different attributes in the same table yet easily query them using
SQL.

Integrating JSON and HSTORE

There are also functions that convert Postgres-maintained key-
value data to JSON formatted data, which increases the flexibility
and scope of NoSQL-like applications that can be addressed by
Postgres.

Following are some examples:

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 8

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Figure 6: Integration JSON and HSTORE

In summary, the JSON data, operator and function enhancements
mean that developing NoSQL applications has become much
easier.

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 9

HSTORE and JSON Integration Examples

Create a table with HSTORE field

CREATE TABLE hstore_data (data HSTORE);

Insert a record into hstore_data

INSERT INTO hstore_data (data) VALUES
('"cost"=>"500", "product"=>"iphone",
"provider"=>"apple"');

Select data from hstore_data

SELECT data FROM hstore_data ;

data
--
 "cost"=>"500", "product"=>"iphone",
"provider"=>"Apple"
(1 row)

Convert HSTORE data to JSON

SELECT hstore_to_json(data) FROM hstore_data ;

hstore_to_json
--

 {"cost": "500", "product": "iphone", "provider":
"Apple"}
(1 row)

SELECT hstore_to_json(data)->>'cost' as price FROM
hstore_data ;
 price

 500

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

JSONB – Binary JSON

Postgres 9.4 introduces JSONB, a second JSON type with a binary
storage format. There are some significant differences between
JSONB in Postgres and BSON, which is used by one of the largest
document-only database providers. JSONB uses an internal
storage format that is not exposed to clients; JSONB values are
sent and received using the JSON text representation. BSON
stands for Binary JSON, but in fact not all JSON values can be
represented using BSON. For example, BSON cannot represent an
integer or floating-point number with more than 64 bits of precision,
whereas JSONB can represent arbitrary JSON values. Users of
BSON-based solutions should be aware of this limitation to avoid
data loss.

Figure 7: BSON Challenges with High Precision Data

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 10

JSONB/BSON Precision Discussion

Insert a 64 bit number into BSON:

db.test.insert(
{
"precision": 1.0000000000000000000000000000000000002

})

Search for a number greater than 0

db.test.find({precision:{$gt:1}},{precision:1})
Result: 0 rows

Same example in Postgres 9.4

SELECT * FROM json_data where data->>'precision' >
'1';

data
--

 {"precision":
1.0000000000000000000000000000000000002}
(1 row)

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

JSON and PL/V8 – Javascript for Postgres

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 11

PL/V8 Function Example

test=# CREATE EXTENSION plv8;
CREATE EXTENSION

CREATE OR REPLACE FUNCTION json_data_update(data json, field text,
value text)
RETURNS jsonb
LANGUAGE plv8 STABLE STRICT
 AS $$

var data = data;
var val = value;
data[field] = val;

 return JSON.stringify(data);
 $$;

This function takes three inputs:

• The name of the JSON data field,

• The tag

• The new value

Below is an example where the user is updating the value of ‘price’
for the AC3 phone, using the above function:

SELECT
data as old_price_data,
json_data_update

(
data,
'price'::text,
'200'::text

) as new_price_data
FROM

json_data
WHERE data->>'name' = 'AC3 Phone';

Result

old_price_data | {"name": "AC3 Phone", "type": "phone", "brand":
"ACME", "price": 200, "available": true, "warranty_years": 1}
 new_price_data | "{\"name\": \"AC3
Phone\", \"type\": \"phone\", \"brand\": \"ACME\", \"price\":
200, \"available\": true, \"warranty_years\": 1}"

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Postgres provides Javascript capabilities right in the database, which
allows developers who know Javascript to write code inside the
database using the same JavaScript engine that powers the web. V8 is
a powerful and fast JavaScript engine that was developed by Google;
in addition to powering Google Chrome it is also at the heart of
Node.js. V8 was designed from the beginning to work on the client and
on the server. V8 is available in Postgres as PL/V8, an add-on for
Postgres. Figure 8: PL/V8 Examples

Combining ANSI SQL Queries and JSON Queries

One of Postgres’ key strengths is the easy integration of conventional
SQL statements, for ANSI SQL tables and records, with JSON and
HSTORE references pointing documents and key-value pairs. Because
JSON and HSTORE are extensions of the underlying Postgres model,
the queries use the same syntax, run in the same ACID transactional
environment, and rely on the same query planner, optimizer and
indexing technologies as conventional SQL-only queries.

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 12

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Figure 9: Postgres Queries Combining JSON and ANSI SQL

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 13

Examples of Integrating ANSI SQL and JSON queries

Find a product that has associated warranty information and select
the price from the products table (Conventional SQL statements are in
italics and NoSQL references are bold).

SELECT DISTINCT
product_type,
 data->>'type' as service,
 data->>'price' as "price(USD)"FROM
json_data

JOIN productsON (products.service_type = json_data.data->>'type')
WHERE (data->>'warranty_years') > 0;

 product_type | service | price(USD)
-------------------------+----------------------------+------------
 AC3 Case Black | ["accessory", "case"] | 12
 AC3 Case Black | ["accessory", "case"] | 12.5
 AC3 Case Green | ["accessory", "case"] | 12
 AC3 Case Green | ["accessory", "case"] | 12.5
 AC3 Case Red | ["accessory", "case"] | 12
 AC3 Case Red | ["accessory", "case"] | 12.5
 AC3 Phone | phone | 200
 AC3 Phone | phone | 320
 AC3 Series Charger | ["accessory", "charger"] | 19
 AC7 Phone | phone | 200
 AC7 Phone | phone | 320
 Phone Extended Warranty | warranty | 38(12 rows)

Find the product_type and brand that is in stock (Conventional SQL
statements are in italics and NoSQL references are bold).

SELECT DISTINCT
product_type, data->>'brand' as Brand,

 data->>'available' as Availability
FROM json_data
JOIN productsON (products.product_type=json_data.data->>'name')WHERE
json_data.data->>'available'=true; product_type | brand |
availability--------------+-------+--------------
 AC3 Phone | ACME | true
 AC3 Case Red | | true
(2 rows)

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Bridging Between ANSI SQL and JSON

Postgres provides a number of functions to bridge between JSON and
ANSI SQL. This is an important capability when applications and data
models mature, and designers start to recognize emerging data
structures and relationships.

Postgres can create a bridge between ANSI SQL and JSON, for
example by making a ANSI SQL table look like a JSON data set. This
capability allows developers and DBAs to start with an unstructured
data set, and as the project progresses, adjust the balance between
structured and unstructured data.

Figure 10: Postgres Queries Combining JSON and ANSI SQL

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 14

Bridging between ANSI SQL and JSON

Simple ANSI SQL Table Definition

CREATE TABLE products (id integer, product_name
text);

Select query returning standard data set

SELECT * FROM products;
 id | product_name
----+--------------
 1 | iPhone
 2 | Samsung
 3 | Nokia

(3 rows)

Select query returning the same result as a JSON data
set

SELECT ROW_TO_JSON(products) FROM products;
row_to_json

 {"id":1,"product_name":"iPhone"}
 {"id":2,"product_name":"Samsung"}
 {"id":3,"product_name":"Nokia"}

(3 rows)

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

EDB has started to conduct comparative evaluations to help users
correctly assess Postgres’ NoSQL capabilities.

The initial set of tests compared MongoDB v2.6 to Postgres v9.4 beta,
on single instances. Both systems were installed on Amazon Web
Services M3.2XLARGE instances with 32GB of memory.

MongoDB and Postgres were installed ‘out of the box’; neither
database was manually tuned for this workload.

The tests included:

• A machine-generated set of 50 million JSON documents, similar
to the first JSON example in Figure 1 (enhanced with one large
‘description:’ field that was populated in 60% of the documents
using random text)

• A load of the data into MongoDB (using IMPORT) and Postgres
(using COPY)

• 50 million individual insert operations for the same data
• Multiple select statements for random records with both

databases returning all records in the query

Table 1 summarizes the results of our findings:

• Ingestion of high volumes of data was approximately 2.1 times
faster in Postgres

• MongoDB consumed 33% more the disk space
• Data inserts took almost 3 times longer in MongoDB
• Data selection took more than 2.5 times longer in MongoDB

than in Postgres

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 15

EDB Comparative Performance Tests

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Table 1: MongoDB and Postgres Comparison (Absolute)

MongoDB 2.6 PostgreSQL 9.4

Data load (s) 15391 7319
Inserts (s) 85639 29125
Selects (s) 1929 753
DB Size (GB) 92.63 69.36

Figure 10: Relative Performance Comparison of MongoDB 2.6 with PostgreSQL 9.4

Postgres Plus Advanced Server includes a procedural language called
EnterpriseDB SPL that closely matches Oracle’s PL/SQL procedural
language. Like PL/SQL, SPL is a highly productive, block-structured
procedural programming language for writing custom procedures,
functions, and triggers. The close similarity between EnterpriseDB’s
SPL and Oracle’s PL/SQL also enables Postgres Plus Advanced
Server to support Oracle-style packages of procedures, functions and
variables.

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 16

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

SQL databases like Postgres have added features to fill the gap that
motivated the rise and development of NoSQL-only technologies, and
will continue to provide capabilities that NoSQL-only technologies
simply cannot. Users of NoSQL-only technologies are finding they still
need relational and transactional capabilities when working with
unstructured data and seeking ways to combine data within a single,
enterprise-grade environment.

The ability of Postgres to support key-value stores and documents
within the same database empowers users to address expanding
demands using proven, best-in-class open source technologies.
Utilizing NoSQL capabilities within Postgres to address more data
problems instead of turning immediately to a niche NoSQL solution
ultimately means lower costs, less risk and less complexity while
delivering enterprise-class workloads with ACID compliance and
ensuring the long-term viability of enterprise data.

Long-standing capabilities that have new uses and continuing
advances will enable Postgres to play a significant role in the data
center and in the cloud long into the future, even as new data
challenges emerge.

Get Started Today. Let EnterpriseDB help you build and execute your
game plan. Contact us at +1-877-377-4352 or +1-781-357-3390, or
send an email to sales@enterprisedb.com to get started today on your
path to database independence.

EntepriseDB is the only worldwide provider of enterprise-class
products and services based on PostgreSQL, the worlds most
advanced and independent open source database.

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 17

About EnterpriseDB

Postgres: NoSQL for the Enterprise

http://www.enterprisedb.com/

Using the NoSQL Capabilities in Postgres

Postgres Plus Advanced Server provides the most popular enterprise
class features found in the leading proprietary products but at a
dramatically lower total cost of ownership across transaction
intensive as well as read intensive applications. Advanced Server
also enables seamless migrations from Oracle® that save up to 90%
of the cost of typical Migrations.

EnterpriseDB employs a number of industry thought leaders and
more PostgreSQL open source community experts than any other
organization including core team members, major contributors
Committers. Our expertise allows us to provide customers in all
market segments unparalleled 24x7 support, value packed software
subscriptions, consulting engagements and targeted training
services.

 For more information, please visit http://www.enterprisedb.com/.

© 2015 EnterpriseDB Corporation. All rights reserved. EnterpriseDB and Postgres Plus are trademarks
of EnterpriseDB Corporation. Other names may be trademarks of their respective owners.
http://www.enterprisedb.com

 Page: 18

20140815

http://www.enterprisedb.com/
http://www.enterprisedb.com/

